Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

Similar documents
Probing Matter: Diffraction, Spectroscopy and Photoemission

X-ray absorption spectroscopy.

Resonant Inelastic X-ray Scattering on elementary excitations

X-ray vision of High Temperature Superconductivity Giacomo Ghiringhelli

Angle-Resolved Two-Photon Photoemission of Mott Insulator

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

Multiplet effects in Resonant X-ray Emission

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Photon Interaction. Spectroscopy

Core Level Spectroscopies

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

Outline. Surface, interface, and nanoscience short introduction. Some surface/interface concepts and techniques

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Neutron scattering from quantum materials

General introduction to XAS

Unsolved problems in biology

Electronic structure calculations results from LDA+U method

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Quantum dynamics in many body systems

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

The 2p X-ray absorption spectra of transition metal systems: New developments and ab-initio routes.

Polarization Dependence of Resonant X-Ray Emission Spectra in Early Transition Metal Compounds

Lecture 2: Magnetic Anisotropy Energy (MAE)

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Energy Spectroscopy. Ex.: Fe/MgO

SUPPLEMENTARY INFORMATION

Energy Spectroscopy. Excitation by means of a probe

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Material Science II. d Electron systems

Atomic Multiplet and Charge Transfer Effects in the Resonant Inelastic X-Ray Scattering (RIXS) Spectra at the Nickel L 2,3.

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

single-layer transition metal dichalcogenides MC2

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

2.1 Experimental and theoretical studies

Electronic and magnetic properties of transition metal compounds: An x-ray spectroscopic study

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Magnetic Moment Collapse drives Mott transition in MnO

Spectroscopies for Unoccupied States = Electrons

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003

Earth Materials I Crystal Structures

Advanced Spectroscopies of Modern Quantum Materials

1 of 5 14/10/ :21

Mott insulators. Mott-Hubbard type vs charge-transfer type

I. Multiple Choice Questions (Type-I)

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

Resonant soft x-ray Raman scattering of NiO

arxiv: v2 [cond-mat.str-el] 7 Mar 2012

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Electronic structure of correlated electron systems. G.A.Sawatzky UBC lecture

High-T c superconductors

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Electronic structure of correlated electron systems. Lecture 2

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets

IV. Surface analysis for chemical state, chemical composition

On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract


Electron Spectroscopy

Electronic Spectra of Complexes

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

In-situ photoemission study of La 1 x Sr x FeO 3 epitaxial thin films

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

X-Ray Emission Spectroscopy

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

NiO - hole doping and bandstructure of charge transfer insulator

High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

SESSION 2. (September 26, 2000) B. Lake Spin-gap and magnetic coherence in a high-temperature superconductor

Korrelationsfunktionen in Flüssigkeiten oder Gasen

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

Photoemission Studies of Strongly Correlated Systems

High temperature superconductivity

X-ray Photoelectron Spectroscopy (XPS)

Ultraviolet Photoelectron Spectroscopy (UPS)

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices

CHEM 130 Exp. 8: Molecular Models

Introduction of XPS Absolute binding energies of core states Applications to silicene

X-ray Energy Spectroscopy (XES).

Contents. Pages. Introduction 2

Matter-Radiation Interaction

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan

Transcription:

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni XAS, XMCD, XES, RIXS, ResXPS: introduzione alle spettroscopie risonanti * Dipartimento di Fisica - Politecnico di Milano Coherentia Seminari sulla luce di sincrotrone - Università degli studi di Napoli Federico II - 5 e 6 luglio 2006 (*) in sostituzione di Lucio Braicovich, Politecnico di Milano 1

Summary Absorption edges and x-ray energies XAS: x-ray absorption spectroscopy Taking advantage of the polarisation of x-rays XES: X-ray emission spectroscopy RIXS: resonant inelastic x-ray scattering 2

Electromagnetic spectrum UV and x-rays 3

Core levels C O Si Sc Fe Zn Y Mo Cd Ce Gd Lu Au Th 3dTM 4dTM RE Actinides 100000 K Binding energy (ev) 10000 1000 100 L 3 M 3 M 5 Hard X-Rays UV Soft X-Rays 10 1s 2p 3/2 3p 3/2 3d 5/2 4p 3/2 4d 5/2 4 0 10 20 30 40 50 60 70 80 90 100 Atomic number Z

X-ray Absorption Cross Section Absorption coefficient (arb. u.) 1 0.1 0.01 1E-3 log scale Linear scale O K 530 ev Cu L 2,3 930-950 ev CuO Cu K 9000 ev 2.5 2.0 1.5 1.0 0.5 1E-4 10 100 1000 10000 Photon Energy (ev) 0.0 5

Resonances in the XAS 3d TM 4sp 3d E 2p Oxygen Rare Earths 5d 4f E Fermi M 2,3 edges (28-77 ev) 3p 2s K edge 530 ev L 2,3 edges (400-950 ev) 2p 1s 3d M 4,5 edges (830-1580 ev) K edge (4.5-9.0 kev) 1s 2p L 2,3 edges (5.5-10 kev) Strong resonances 6

Spin-Orbit splitting 3p: M 2,3 edge XAS Spin-Orbit splitting Source: S. Nakai, et al PRB 9, 1870 (1974) 7

2p: L 2,3 edge XAS Spin-Orbit splitting Spin-Orbit splitting Mn L 2,3 XAS L 3 L 3 NiO La 0.7 Sr 0.3 MnO 3 Ni metal 850 855 860 NiO Ni metal L 2 MnO 850 860 870 880 Photon Energy (ev) Source: G. Ghiringhelli, N.B. Brookes et al unpublished 640 645 650 655 660 photon energy (ev) Source: C. Aruta, G. Ghiringhelli et al unpublished 8

Orbitals and XAS 2p 3p The radial integral is important! 3d Φ f ε r Φ i = ( r R R dr)( Y ε u Y dω) 3 * * f i f r i 9

1s: Ni and Mn K edge XAS NO Spin-Orbit splitting E 0 =8333eV Source: Z. Tan et al Phys. Rev. B 47, 12365 (1993) Source: G. Subìas, et al PRB 56, 8183 (1997) 10

Cu K edge XAS E 0 =8980eV Source: Z. Tan et al Phys. Rev. B 47, 12365 (1993) Source: G. Liang, Phys. Rev. B 51, 1258 (1995) 11

EXAFS and NEXAFS 12

1s: Oxygen K edge XAS NO Spin-Orbit splitting La 2 x Sr x NiO 4+δ Source: P. Kuiper et al Phys. Rev. B 44, 4570 4575 (1991) Source: M. Abbate, et al Phys. Rev. B 46, 4511 4519 (1992) 13

Band model E 3dTM E Oxygen E v E v 4sp E F 3d hybridisation E F hν in 3p hν in 2p 2p 1s 1s XAS probes Density of Empty states 14

and atomic model Total E 3dTM - O 2p 5 3d n+2 L 2p 5 3d n+1 M.S.: Multiplet Splitting 3d n+1 L C.I.: Configuration Interaction 3d n C.I. M.S. g> XAS probes orbital occupation 15

Crystal field z 2 2 Cu: x -y orbital x y d states x 2 -y 2, z 2 10Dq xy, yz,zx e g t 2g x 2 -y 2 z 2 10Dq xy yz,zx b 1 a 1 b 2 e g Spherical O 3 Cubic O h Tetragonal D 4h 16

3d split states t 2g states e g states e zx z z z x x x y y z x y x b 2 xy b x 2 -y 2 z 2 1 a 1 e yz z y y 17

L 3 XAS and multiplets E Excitation CuO 3d hν in 2p 3/2 Ground state Excited states 928 930 932 934 Photon Energy (ev) MnO 3d n 2p 5 3d n+1 CuO: 3d 9 3d 10 NiO: 3d 8 3d 9 MnO: 3d 5 3d 6 One single peak Many peaks 636 638 640 642 644 646 photon energy (ev) 18

L 3 XAS and valence L 3 L 2 CuO: Cu 2+ is 3d 9 2.1 ev Cu 2 O: Cu 1+ is 3d 10 Cu metal: 3d 10 4s 1 CuO Cu 2 O 930 935 940 Photon Energy (ev) Source: M. Grioni et al PRB 45, 3309 (1992) Source: M. Finazzi et al PRB 61, 4629 (2000) 19

L 3 XAS and cuprates doping La 2-x Sr x CuO 4 Cu L 3 XAS x=0.30 x=0.22 x=0.15 x=0.07 x=0.03 CuO Doped: Zhang-Rice singlet 3d 9 L Cu 2+ : 3d 9 O 1- : 2p 5 Undoped: 3d 9 Cu 2+ 3d 9 O 2- : 2p 6 931 932 933 934 935 936 937 Photon energy (ev) 3d 9 1.5 ev 3d 9 L By choosing the excitation on the main peak we select the 3d 9 component Source: G. Ghiringhelli, N.B. Brookes et al unpublished Source: Z. Hu et al Europhys. Lett. 59, 135 (2002) 20

Linear polarisation of x-rays Empty 3d state z E hν in Empty 3d state z E hν in E E x y x y x 2 -y 2 z 2 b 1 a 1 High absorption No absorption No absorption High absorption 21

3d hole symmetry in cuprates 3d 9 (2p 3/2 ) 3 3d 10 hν θ E Result: the hole in Cu 2+ has 100% x 2 -y 2 symmetry 22

Circular polarisation of x-rays XAS-MCD: x-ray absorption magnetic circular dichroism E Fermi level 3d 2p j=3/2 j=1/2 z LCP m RCP M L 3 : 2p 3/2 3d L 2 : 2p 1/2 3d M 3d 2p 3/2 m=-1 RCP sample number of free states matrix elements z transition rates m=1 LCP z absorption XAS-MCD experimental geometry M L 3 LCP RCP 23

Intensity (arb. units) 8 7 6 5 4 3 2 1 0-1 XMCD XAS-MCD: x-ray absorption magnetic circular dichroism L 3 Fe Σ(L 3 +L 2 ) Co Ni L 2 L 3 L 2 L 3 L 2 Σ(L 3 +L 2 ) Σ(L 3 +L 2 ) (L 3 +L 2 ) (L 3 +L 2 ) (L (L 3 ) (L 3 ) 3 ) (L 3 +L 2 ) 40 30 20 10 0 Integrated Intensity (arb. units) -2 700 720 740 760 780 800 820 840 860 880 900 Photon energy (ev) -10 24

XES: emission after a resonant absorption E 3dTM E 3dTM E v E v E F 4sp 3d E F 4sp 3d hν in 3p 3p hν out 2p 2p 1s 1s XES probes Density of Occupied States 25

Resonant O K edge XES of cuprates Source: L. Duda et al Phys. Rev. B 61, 4186 (2000) 26

RIXS: a resonant inelastic scattering i> E transferred =hν in -hν out hν in hν out 3d n+1 L Charge Transfer g> f> 3d n * dd excitations RIXS probes charge neutral local excitations 27

RIXS (2) x hν out e out spin E Excitation De- excitations e out hν out sample y hν in z hν in polarisation Ground state Intermediate states Final states Ti me hν in = x-ray photon It is a Raman measurement! excited states elastic peak 28 Core level to Valence empty states transition Element selective G, Ghiringhelli et al. PRB 73, 035111 (2006) Intensity (arb. units) (C) -7-6 -5-4 -3-2 -1 0 1 Relative emitted energy (ev) Energy loss

RIXS of Cuprates Intensity (photons/s/ev) 1.0 80 Cu L 3 70 0.5 60 LSCO XAS 0.0 CuO 50 LCO 40 SCOC 30 NCCO 20 LSCO 10 x2 BSCCO x2 0-9 -8-7 -6-5 -4-3 -2-1 0 1 2 Relative photon energy (ev) Source: G. Ghiringhelli, et al PRL 92, 117406 (2004) 29

dd excitations of cuprates d states x 2 -y 2, z 2 10Dq xy, yz,zx e g t 2g x 2 -y 2 z 2 10Dq xy yz,zx b 1 a 1 b 2 e g Spherical O 3 Cubic O h Tetragonal D 4h How much is the energy needed to move the hole from the x 2 -y 2 to other orbitals? x 2 -y 2 z 2 10Dq xy yz,zx b 1 a 1 b 2 e g b 1 a 1 b 2 e g b 1 a 1 b 2 e g 30

Resonant Photoemission 3d E E E e E e An original idea of L.Hao Tjeng (tested on CuO) PRL 78, 1126 (1997) hν Final state: singlet or triplet? 2p 3/2 2p 1/2 singlet triplet 31 Ground state Intermediate state Final states 3d n (2p 3/2 ) 3 3d 10 3d 8 3d 9 L Zhang-Rice singlet

Zhang-Rice singlets in cuprates Free ion Cubic O h Tetragonal D 4h 3 : d 8 3 F MIN 3 d 8 : 3 A2g 10Dq (cr. field) e g 3 d 8 : 1 A1 b 1 b 1 b 2 singlet 3d 9 L state in hole-doped materials Lowest energy 2-hole state Hubbard model (by Zhang and Rice) Cluster model (Eskes and Sawatzky) t 2g a 1 J (exchange) e g e MAJ 10Dq (cr. field) b 2 t 2g a 1 e 3 d 8 : 3 F 3 d 8 : 3 A2g 3 d 8 : 3 B1 b 1 J (exchange) MIN 10Dq (cr. field) e g t 2g e g a 1 b 2 b 1 e triplet singlet MAJ 10Dq (cr. field) a 1 b 2 t 2g e 32

Measuring 1 ZR in BSCCO with ResSCP ResSCP: resonant Spin resolved photoemission with Circularly Polarised x-ray 1 0-1 Bi 2 Sr 2 CaCu 2 O 8+δ 500 BSCCO 300 10 3 Counts 400 300 Sum Sing Trip 200 100 10 3 Counts 200 0 100 0 0.8 Almost pure singlet character at Fermi level Polari sation 0.4 0.0 1 G 1 ZR 15 10 5 0 Binding Energy ( ev) 33 Brookes, Ghiringhelli et al, Phys. Rev. Lett. 87, 237003 (3 Dec 2001)

Bibliography XAS High-Resolution X-ray Emission and X-ray Absorption Spectroscopy, Frank de Groot, Chem. Rev. 101, 1779 (2001) XMCD Magnetic properties of transition-metal multilayers studied with X-ray magnetic circular dichroism spectroscopy, J. Stohr and R. Nakajima, IBM J. RES. DEVELOP. 42, 73 (1998) RIXS Resonant inelastic x-ray scattering spectra for electrons in solids Akio Kotani and Shik Shin, REV. MODERN PHYS. 73, 203 (2001) Resonant inelastic X-ray scattering in d and f electron systems A. Kotani, Eur. Phys. J. B 47, 3 27 (2005) 34