Iridium Containing Honeycomb Delafossites by Topotactic Cation Exchange. Supplemental Material

Similar documents
NOT FOR DISTRIBUTION REVIEW COPY. Na 2 IrO 3 as a molecular orbital crystal

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Novel Synthesis Method of Nonstoichiometric Na 2-x IrO 3 Crystal Structure, Transport and Magnetic Properties

Arnab Pariari & Prabhat Mandal Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta , India

Supplementary information: Investigation of the role of morphology on the magnetic properties of Ca 2 Mn 3 O 8 materials

Direct visualization of the Jahn Teller effect coupled to Na ordering in Na 5/8 MnO 2

Supplementary Material

Electronic Supplementary Information

Supplementary Information

Phases of Na x CoO 2

Local structure of the metal-organic perovskite dimethylammonium manganese(ii) formate

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Magnetic properties of honeycomb iridates and rhodates. Philipp Gegenwart

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution

Supporting Information

Influence of the Pseudohalide Ligands on the SIM Behaviour of Four- Coordinate Benzylimidazole-Containing Cobalt(II) Complexes

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

Magnetic structure and properties of centrosymmetric twisted-melilite K 2 CoP 2 O 7

SUPPLEMENTARY INFORMATION

Study on Magnetic Properties of Vermiculite Intercalation compounds

T. Hatakeda, T. Noji, S. Hosono, T. Kawamata, M. Kato, and Y. Koike

New Li-Ethylenediamine-Intercalated Superconductor Li x (C 2 H 8 N 2 ) y Fe 2-z Se 2 with T c = 45 K

Supporting Information (Online Material) for

Oxygen storage properties of La1-xSrxFeO3-δ for chemicallooping reactions an in-situ neutron and synchrotron X-ray study

Electronic Supplementary Information (ESI)

alkaline-metal-ethylenediamine-intercalated superconductors A x (C 2 H 8 N 2 ) y Fe 2-z Se 2 (A = Li, Na) with T c = 45 K

Ferromagnetic and spin-glass properties of single-crystalline U 2 NiSi 3

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene

Supporting Information

Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Fa Wang and T. Senthil, PRL 2011

state, spin-gap and a Böse-Einstein condensation under high fields. (CuBr)LaNb 2 O 7 shows a collinear antiferromagnetic order, (CuBr)Sr 2 Nb 3 O 10 h

Crystal Structure and Elementary Properties of Na x CoO 2 (x = 0.32, 0.5, 0.6, 0.75, and 0.92) in the Three-Layer NaCoO 2 Family

Transport and magnetic properties in one dimensional A 3 ABO 6 family

Supporting Information

Synthesis of a Labile Sulfur-Centred Ligand, [S(H)C(PPh 2 S) 2 ] : Structural Diversity in Lithium(I), Zinc(II) and Nickel(II) Complexes

Supporting Information for

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets

Supporting Information

Supporting Information. Lacunary Polytungstate Ligands

Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4

Field-Temperature Evolution of Antiferromagnetic Phases in Ludvigites Ni 3-x Mn x BO 5

Impeller-like dodecameric water clusters in metal organic nanotubes

Electronic Supplementary Information

Magnetization reversal and ferrimagnetism in Pr 1 x Nd x MnO 3

Supporting information for Template-directed proton conduction pathway in a coordination framework

arxiv: v2 [cond-mat.str-el] 5 May 2014

Observation of slow relaxation of the magnetization and hysteresis. loop in antiferromagnetic ordered phase of a 2D framework based on

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an

Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering

Neutron Powder Diffraction Theory and Instrumentation

Supporting Information for Interstitial oxygen in perovskite-related Sr 6-2x

Hyper-expanded interlayer separation in superconducting barium intercalated FeSe

Supporting Information

The Cubic Perovskite Structure of Black. Formamidinium Lead Iodide, α-[hc(nh 2 ) 2 ]PbI 3,

Magnetic Structure of TbRu 2 Al 10

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space

Supporting information

Ordnung muss sein: heteroelement order and disorder in polyoxovanadates

Structure and Magnetism of the mono-layer hydrate Na 0.3 NiO 2 0.7H 2 O

Metal-Organic Frameworks Based on Rigid Ligands as Separator. Supporting Information

Structural and magnetic characterization of the new GdMn 1-x. O 3 perovskite material

Electronic Supplementary Information (ESI) for

Supporting Information. Ze-Min Zhang, Lu-Yi Pan, Wei-Quan Lin, Ji-Dong Leng, Fu-Sheng Guo, Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong*

Magnetic Properties and Scaling Behavior in Perovskite like La 0.7 (Ba 1-x Pb x ) 0.3 CoO 3 System

An Anionic Metal Organic Framework For Adsorption and. Separation of Light Hydrocarbons

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Phthalocyanine-Based Single-Component

The oxygen deficient Ruddlesden Popper La 3 Ni 2 O 7 d (d = 0.65) phase: Structure and properties

Supporting Information

Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

Supporting Information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

SUPPLEMENTARY INFORMATION

University of Chinese Academy of Sciences, Beijing , China. To whom correspondence should be addressed :

Shigeki Yonezawa*, Yuji Muraoka and Zenji Hiroi Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba

Magnetic Order versus superconductivity in the Iron-based

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Supporting Information for. Remarkably high temperature spin transition exhibited by two new metal-organic frameworks

Supplementary Information

Supplementary Materials for

c-axis Dimer Inducing Dome-like Superconductivity in Weakly Correlated RE 2 Cu 5 As 3 O 2 (RE=La, Pr)

ELECTRONIC SUPPLEMENTARY INFORMATION

Benzene Absorption in a Protuberant-Grid-Type Zinc(II) Organic Framework Triggered by the Migration of Guest Water Molecules

Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan Li, Jing Chen and Jiangshan Zhang

Electronic Supplementary Information

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Electronic Supplementary Information. S1. The characterization and crystallographic information for the new-phased VO 2 (D)

Supplementary Materials for

Supplementary Information. Structure and Electrochemical Performance

Synthesis, crystal structure and physical properties of quasi-one-dimensional ACr 3 As 3 (A = Rb, Cs)

Supporting Information

Halogen bonding of N-bromosuccinimide by grinding

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Electronic supplementary information (ESI)

Supporting information. Contents

arxiv:cond-mat/ v1 [cond-mat.supr-con] 23 Feb 1999

SUPPLEMENTARY INFORMATION

Transcription:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Iridium Containing Honeycomb Delafossites by Topotactic Cation Exchange Supplemental Material John H. Roudebush 1, K. A. Ross 2,3,4, and R. J. Cava 1 1 Department of Chemistry, Princeton University, Princeton NJ 08544 USA 2 Institute for Quantum Matter, Johns Hopkins University, Baltimore MD, 21218 USA 3 NIST Center for Neutron Research, Gaithersburg MD 20899 USA 4 Current address: Colorado State University, Fort Collins CO, 80523 USA 1

Supplemental Table S1: Crystallographic data for Cu 3 LiIr 2 O 6 at 295 K. Space group C2/c, a = 5.2910(2), b = 9.1434(5), c = 11.6203(5), beta = 98.798(8), 555.55(4) Å 3. Parameters = 27. Powder X-ray diffraction: λ = CuKα, 5-110 º2θ, data points = 5245, reflections = 401. Agreement factors: Rbragg = 19.6, Rf = 13.7, χ 2 = 3.87. Atom Position x y z B Occ Cu1 4e 0 0.728(3) ¼ 1.5 1 Cu2 4e 0 0.454(3) ¼ 1.5 1 Cu3 4e ½ 0.581(3) ¼ 1.5 1 Ir1 8f 0.238(1) 0.078(1) 0.003(1) 0.5 0.79(1) Li1 8f 0.238(1) 0.078(1) 0.003(1) 0.5 0.21(1) Ir2 4d ¼ ¾ 0 0.5 0.57(1) Li2 4d ¼ ¾ 0 0.5 0.43(1) O1 8f 0.44(1) 0.224(7) 0.084(3) 0.93 1 O2 8f 1.01(1) 0.487(5) 0.100(5) 0.93 1 O3 9f 0.45(1) 0.566(7) 0.091(4) 0.93 1 2

Supplemental Table S2: Crystallographic data for Cu 3 NaIr 2 O 6, 295 K. Space group C2/m, a = 5.39017(19), b = 9.29984(36), c = 5.97093(20), beta = 107.6399(36), 285.24(2) Å 3. Parameters = 23. Powder X-ray diffraction: λ = CuKα, 5-110 º2θ, data points = 5251, reflections = 238, parameters. Agreement factors: R Bragg = 8.50 R f = 7.27. Powder neutron diffraction: λ = 1.5398, 13-156 º2θ, data points = 3296, reflections = 342. Agreement factors: R Bragg = 10.8 R f = 8.71. Global χ 2 = 1.42. Atom Position x y z B Occ Cu1 2c 0 0 ½ 1.9(1) 1 Cu2 4h 0 0.340(2) ½ 1.9(1) 1 Ir1 4g 0 0.160(1) 0 0.54(1) 0.57(3) Na1 4g 0 0.160(1) 0 0.54(1) 0.43(3) Ir2 2b 0 ½ 0 0.54(1) 0.85(3) Na2 2b 0 ½ 0 0.54(1) 0.15(3) O1 8j 0.881(2) 0.343(2) 0.172(2) 0.8(1) 1 O2 4i 0.916(3) 0 0.183(4) 0.8(1) 1 3

Table S3: Crystallographic data for Cu 3 NaIr 2 O 6 at 5 K. Space group C2/c, a = 5.3882(1), b = 9.2908(2), c = 11.5196(2), beta = 99.050(3), 569.50(2) Å 3. Bov = -0.52(1), parameters = 21. Powder neutron diffraction: λ = 1.5406, 13-156 º2θ, data points = 3296, reflections = 642. Agreement factors: Rbragg = 9.15, Rf = 7.75, χ 2 = 2.37. *B and Occ are fixed to the values obtained for the refinement at RT, a universal B factor (Bov) is used to compensate for changes in thermal parameters. Atom Position x y z B* Occ* Cu1 4e 0 0.757(2) ¼ 1.5 1 Cu2 4e 0 0.421(2) ¼ 1.5 1 Cu3 4e ½ 0.593(1) ¼ 1.5 1 Ir1 8f 0.254(2) 0.080(1) 0.004(1) 0.51 0.76 Na1 8f 0.254(2) 0.080(1) 0.004(1) 0.51 0.24 Ir2 4d ¼ ¾ 0 0.51 0.52 Na2 4d ¼ ¾ 0 0.51 0.48 O1 8f 0.440(3) 0.237(2) 0.088(1) 0.93 1 O2 8f 0.941(3) 0.422(2) 0.080(1) 0.93 1 O3 9f 0.462(3) 0.576(2) 0.095(1) 0.93 1 4

Table S4: Unit cell refinements in C2/m of Cu 3 NaIr 2 O 6 and Cu 3 Li 2 IrO 6 as well as Na 2 IrO 3 and Li 2 IrO 3. Interlayer spacing and Ir-Ir distances are also given. All units in Å, unless otherwise noted. Phase Instrume nt temp Space group a b c beta layer spacing Ir-Ir dis ref Na 2 IrO 3 SXRD RT C2/m 5.4270(1) 9.395(1) 5.614(1) 109.037(18) 5.307(1) 3.130(7) 3.138(14) 1 Cu 3 NaIr 2 O 6 NPD + PXRD RT C2/m 5.3902(2) 9.2998(4) 5.9709(2) 108.640 (4) 5.6902(2) 3.080(5) 3.159(11) this work Cu 3 NaIr 2 O 6 NPD 5 K C2/m 5.3759(2) 9.3136(3) 5.9720(1) 107.757(2) 5.6875(1) Li 2 IrO 3 PXRD RT C2/m 5.1633(2) 8.9290(3) 5.1219(2) 109.759(3) 4.8203(1) Cu 3 LiIr 2 O 6 PXRD RT C2/m 5.2908(3) 9.1463(5) 6.0114(2) 107.198(5) 5.7426(2) 3.097(4) 3.118(6) 2.973(3) 2.979(1) 3.041(4) 3.078(6) this work O Mally this work Table S5: Bond lengths and angles of Cu 3 NaIr 2 O 6 (s.g. = C2/m) at room temperature and 5 K Phase radiation temp Ir-Ir dis Ir-Ir mean, STD, % dev Ir-O1 Ir-O2 Ir-O avg, STD, % dev Na-O1 Na-O2 Na-O avg, STD, % dev Ir-O1-Ir Ir-O2-Ir Ir-O-Ir avg Cu 3 NaIr 2 O 6 Neutron +X-ray RT 3.080(5) 3.159(11) 3.12 +/- 0.06, 1.8% 1.999(9), 2.181(15) 1.980(13) 2.053 +/- 0.11, 5.3% 2.001(12) 2.176(13) 2.089 +/- 0.12, 5.7% 97.7(4) 98.5(3) 98.1 Cu 3 NaIr 2 O 6 Neutron 5 K 3.097(4) 3.118(6) 3.108 +/- 0.15, 4.8% 2.016(6), 2.154(8) 2.046(8) 2.072 +/- 0.073, 3.5% 1.946(6) 2.157(8) 2.052 +/- 0.15, 7.3% 96.71(15) 97.5(3) 97.1 5

Figure S1: Powder X-ray diffraction pattern and Rietveld fit of Cu 3 LiIr 2 O 6 at room temperature in space group C2/c. Data is given as red circles, the fit as a black line, the difference as a blue line and Bragg reflections as green hashes. Figure S2: Neutron (upper panel) and X-ray (lower panel) powder diffraction of Cu 3 NaIr 2 O 6 (s.g. = C2/m) at 295 K with Rietveld fit. Data is given as red circles, the fit as a black line, the difference as a blue line and Bragg reflections as green hashes. 6

Figure S3: Resistivity ρ (Ω cm), of Cu 3 NaIr 2 O 6 from 350 to 65 K measured upon cooling. Upper left inset - log plot of ρ vs. 1/T. The date cannot be fitted to an activated Arrhenius behavior ρ(t) = exp(-δ/t). Lower right inset - log plot of ρ vs. 1/T -1/4 allowing for a good fit to an activated ρ(t) = exp[(-δ/t) 1/4 ] associated with a variable-range hopping mechanism and similar to Na 2 IrO 3.{Singh, 2010 #930} 7

Figure S4: Upper Field cooled (FC) and zero-field cooled (ZFC) magnetization of Cu 3 NaIr 2 O 6 measured with an applied field of 100 Oe. Lower AC magnetization, real M (Left) and imaginary (right) portions of the signal in the temperature range of the magnetic transition. Samples were measured with a 10 Oe applied field and 500, 1000, 5000 and 10,000 Hz. A change in the transition temperature with frequency, a classic characteristic of a spin-glass, is not observed. 1. Choi, S. K.; Coldea, R.; Kolmogorov, A. N.; Lancaster, T.; Mazin, I. I.; Blundell, S. J.; Radaelli, P. G.; Singh, Y.; Gegenwart, P.; Choi, K. R.; Cheong, S. W.; Baker, P. J.; Stock, C.; Taylor, J., Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. Phys Rev Lett 2012, 108, (12), 127204. 8