Nonlinear dark energy clustering

Similar documents
Nonlinear fluctuation spectra for viscous dark matter and heavy ions

Resummation methods in cosmological perturbation theory: next-to-leading computations

Examining the Viability of Phantom Dark Energy

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

Effective Description of Dark Matter as a Viscous Fluid

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

Following DM Haloes with the Time-RG

Astro 448 Lecture Notes Set 1 Wayne Hu

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

Examining the Viability of Phantom Dark Energy

Dark Forces and the ISW Effect

Dark Matter Properties and the CMB. Michael Kopp in collaboration with Dan Thomas and Costas Skordis

UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences

Lecture 3+1: Cosmic Microwave Background

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

Detecting Dark Energy Perturbations

Cosmological Structure Formation Dr. Asa Bluck

Theory of Cosmological Perturbations

Dark energy constraints using matter density fluctuations

arxiv: v2 [astro-ph.co] 7 Jun 2011

Efficient calculation of cosmological neutrino clustering

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY

Late-time quantum backreaction in cosmology

Astro 448 Lecture Notes Set 1 Wayne Hu

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Scalar perturbations of Galileon cosmologies in the mechanical approach in the late Universe

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017

Measuring Neutrino Masses and Dark Energy

Conserved Quantities in Lemaître-Tolman-Bondi Cosmology

The impact of relativistic effects on cosmological parameter estimation

A brief Introduction to CAMB and CosmoMC

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

The homogeneous and isotropic universe

Week 9: Einstein s field equations

UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences

Neutrinos and cosmology

The Unifying Dark Fluid Model

Non-linear structure formation in modified gravity

Loop Quantum Cosmology holonomy corrections to inflationary models

Summary of equations for CMB power spectrum calculations

Unication models of dark matter and dark energy

The Metric and The Dynamics

General Relativistic N-body Simulations of Cosmic Large-Scale Structure. Julian Adamek

Multifield Dark Energy (Part of the Master Thesis)

Useful Quantities and Relations

TFI Theories of the Fundamental Interactions. Andrea Marini Università di Perugia & INFN Perugia

Fluctuations of cosmic parameters in the local universe

Towards Multi-field Inflation with a Random Potential

The AfterMap Wayne Hu EFI, February 2003

Multi-disformal invariance of nonlinear primordial perturbations

Non-singular quantum cosmology and scale invariant perturbations

Massive neutrinos and cosmology

Equation of state of dark energy. Phys. Rev. D 91, (2015)

Theoretical implications of detecting gravitational waves

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology

TESTING GRAVITY WITH COSMOLOGY

Propagation of Gravitational Waves in a FRW Universe. What a Cosmological Gravitational Wave may look like

Signatures of Trans-Planckian Dissipation in Inflationary Spectra

Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation

Dark Energy. RESCEU APcosPA Summer School on Cosmology and Particle Astrophysics Matsumoto city, Nagano. July 31 - August

Imprint of Scalar Dark Energy on CMB polarization

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Lecture II. Wayne Hu Tenerife, November Sound Waves. Baryon CAT. Loading. Initial. Conditions. Dissipation. Maxima Radiation BOOM WD COBE

Nonlinear wave-wave interactions involving gravitational waves

4 Evolution of density perturbations

N-body Simulations and Dark energy

Inflationary Cosmology and Alternatives

arxiv: v3 [astro-ph.co] 9 Oct 2012

1 Inhomogeneities. 2 Scales and variables

CMB Tensor Anisotropies in Metric f (R) Gravity

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Cosmology and the origin of structure

Evolution of Cosmic Structure Max Camenzind

Testing vector-tensor gravity with current cosmological observations

Gravitation: Cosmology

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

Origin of Structure Formation of Structure. Projected slice of 200,000 galaxies, with thickness of a few degrees.

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant

Measuring the Speed of Sound of Quintessence

Astro 321 Set 3: Relativistic Perturbation Theory. Wayne Hu

Nonlinear power spectrum in clustering and smooth dark energy models beyond the BAO scale

The Once and Future CMB

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

A New Approach to the Cosmological Constant Problem, and Dark Energy. Gregory Gabadadze

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts:

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

KIPMU Set 4: Power Spectra. Wayne Hu

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Inhomogeneous vacuum energy

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Cosmological perturbation theory at three-loop order

Cosmological Issues. Consider the stress tensor of a fluid in the local orthonormal frame where the metric is η ab

Could dark energy be modified gravity or related to matter?

The dilaton and modified gravity

Transcription:

Nonlinear dark energy clustering Guillermo Ballesteros Padua University & INFN and Centro Enrico Fermi 22/9/2011 PTChat workshop, IPhT Saclay

Overview 1. Pressure from dark energy 2. Non linearities 3. Conclusions Setup: Mixture of matter and dark energy (DE) Aim: Compute non linearities on the power spectra Motivation: Future high precision cosmological data sets

Pressure perturbations ( ) Energy density: ρ(τ, x i ) = ρ(τ)+δρ(τ, x i ) = ρ(τ) 1+δ(τ, x i ) Pressure: P(τ, x i ) = P(τ)+δP(τ, x i ) = P(τ) ( ) 1+Π(τ, x i ) Equation of state: P(τ) w(τ) ρ(τ), w < 1/3 for DE Sound speed: δp(τ, x i ) c s 2 (τ, x i )δρ(τ, x i ) c s 2 δ = wπ ( ) Rest frame of the fluid: c 2 s δ = ĉ 2 s δ + 3H(1+w) ĉ 2 2 s c a θ/k 2 0 ĉ s 2 1 for DE Adiabatic sound speed: c a 2 = P/ ρ, ẇ = 3(1+w) ( w c a 2 ) H

The smaller is ĉs 2 the largest is the relevance of dark energy perturbations. Matter (dust): ĉ 2 s = 0 Examples Radiation (photons, masless neutrinos): ĉ 2 s = 1/3 Quintessence (with a canonical kinetic term): ĉ 2 s = 1 K-essence (non-canonical kinetic term): ĉs 2 1 (even ) Two scalar fields (interacting or not): ĉs 2 1 String gas: 0 < ĉ 2 s << 1 Chaplygin gas (P 1/ρ): ĉ 2 s 0... Current status - ĉ s 2 cannot be detected with presently available data - Planck + LSST will be able to set a lower bound

Non linear equations Energy momentum tensor: T µν = (ρ+p)v µ v ν + Pg µν v µ =γ(1, u i ), γ = (1 u 2 ) 1/2 1 a u i = dx i /dτ, ah = da/dτ Scalar perturbations: } ds 2 = a 2 (τ) { (1+2φ)dτ 2 +(1 2φ)dx i dx i comoving conformal coordinates

Non linear equations in real space Continuity and Euler equations from T µν ;µ = 0 ( ρ+u 2 P ) + 3H(ρ+P)+ [(ρ+p) u] = 0 u+hu+(u ) u+ P + uṗ ρ+p + φ N = 0 Poisson equation from G µν = 8πG T µν 2 φ N = 3 2 H2 Ω α (δ α 3(1+w α )Hχ α ) α=m, x ( ) ρ(τ, x i ) = ρ(τ) 1+δ(τ, x i ) P(τ, x i ) = P(τ) ( ) 1+Π(τ, x i ) c s 2 δ wπ u = χ

Non linear perturbation equations in Fourier space Continuity ( ) ( ( ) ) δ(k)+3 ĉ 2 s w Hδ(k)+(1+w) 1+9 ĉ 2 H 2 s w θ(k) ( ) 2 + 1+ĉ s d 3 p d 3 qδ D (k p q)α(q, p)θ(q)δ(p) +O(2) = 0 Euler θ(k) + (1 3ĉ ) 2 s Hθ(k) ĉs 2 k 2 (1+w) δ(k) k2 φ N +(1 ĉ 2 s ) d 3 p d 3 qδ D (k p q)β(q, p)θ(q)θ(p)+o(2) = 0 k 2 Poisson k 2 φ N = 3 2 H2 α ( ) Ω α δ α (k)+3(1+w α ) H2 θ α (k) k 2 H

Correlation functions of matter and dark energy δ m ϕ = θ m /H δ x θ x /H e η, η = log a a in η ϕ a (k,η) = Ω ab (k, η)ϕ b (k,η) +e η d 3 p d 3 qδ D (k p q)γ abc (k, p, q)ϕ b (p,η)ϕ c (q,η) ϕ a (k)ϕ b (q) δ D (k+q)p ab (k) ϕ a (k)ϕ b (q)ϕ c (p) δ D (k+q+p)b abc (k, q, p) ϕ a (k)ϕ b (q)ϕ c (p)ϕ d (r) δ D (k+p+q+r) Q abcd (k,q,p,r) +δ D (k+q)δ D (p+r)p ab (k)p cd (p) +δ D (k+p)δ D (q+r)p ac (k)p bd (q) +δ D (k+r)δ D (q+p)p ad (k)p bc (q).

Time renormalization group (TRG) η ϕ a ϕ b = Ω ac ϕ c ϕ b Ω bc ϕ a ϕ c + e η γ acd ϕ c ϕ d ϕ b + e η γ bcd ϕ a ϕ c ϕ d η ϕ a ϕ b ϕ c = Ω ad ϕ d ϕ b ϕ c Ω bd ϕ a ϕ d ϕ c Ω cd ϕ a ϕ b ϕ d + e η γ ade ϕ d ϕ e ϕ b ϕ c + e η γ bde ϕ a ϕ d ϕ e ϕ c + e η γ cde ϕ a ϕ b ϕ d ϕ e η ϕ a ϕ b ϕ c ϕ d =.... Q abcd (k,q,p,r) = 0 η P ab (k) =... η B abc (k, q,q k) =...

η P ab (k) = Ω ac (k)p cb (k) Ω bc (k)p ac (k) + e η d 3 q [γ acd (k, q, q k) B bcd (k, q, q k) +B acd (k, q, q k)γ bcd (k, q, q k)] η B abc (k, q, q k) = Ω ad (k)b dbc (k, q, q k) Ω bd ( q)b adc (k, q, q k) Ω cd (q k)b abd (k, q, q k) + 2e η [γ ade (k, q, q k)p db (q)p ec (k q) +γ bde ( q, q k, k)p dc (k q)p ea (k) + γ cde (q k, k, q)p da (k)p eb (q)]

Power spectra of density perturbations 1. Matter: P m = δ m δ m 2. Total clustering density (matter & dark energy): ρ T = ρ m +δρ m + ρ x +δρ x δ T = δρ T / ρ T = Ω m δ m +Ω x δ x P T (k) = (Ω m δ m (k)+ω x δ x (k)) 2 = Ω 2 m P m(k)+2ω m Ω x δ m (k)δ x (k) +Ω 2 x δ x(k) 2

The case of zero sound speed (maximal clustering) For ĉ 2 s = 0 we can use δ T δ m + Ωx Ω m δ x and θ θ m δ T (k)+c(τ)θ(k)+ d 3 p d 3 qδ D (k p q)α(q, p)θ(q)δ (n) T (p) = 0 θ(k)+hθ(k)+ 3 2 Ω mh 2 δt (k) + d 3 p d 3 qδ D (k p q)β(q, p)θ(q)θ(p) = 0 C(τ) = 1+(1+w) Ω x Ω m

Linear DE approximation δ m (k)+θ m (k)+ d 3 p d 3 qδ D (k p q)α(q, p)θ m (q)δ m (p) = 0 θ m (k)+hθ m (k)+ 3 2 H2 (Ω m δ m (k)+ω x δ x (k)) + d 3 p d 3 qδ D (k p q)β(q, p)θ m (q)θ m (p) = 0,

Linear DE approximation δ m (k)+θ m (k)+ d 3 p d 3 qδ D (k p q)α(q, p)θ m (q)δ m (p) = 0 θ m (k)+hθ m (k)+ 3 ( 2 H2 Ω m δ m (k) 1+ Ω xδx L(k) ) Ω m δm L (k) + d 3 p d 3 qδ D (k p q)β(q, p)θ m (q)θ m (p) = 0 2 1 2ĉ s For Ω m 1, δ x = (1+w) 2 1 3w + ĉ δ m, ĉs 1 H k H s w 1 δ x δ m < 1 δ 2 x δ2 m

Linear DE approximation δ m (k)+θ m (k)+ d 3 p d 3 qδ D (k p q)α(q, p)θ m (q)δ m (p) = 0 θ m (k)+hθ m (k)+ 3 ( 2 H2 Ω m δ m (k) 1+ Ω xδx(k) L ) Ω m δ m(k) L + d 3 p d 3 qδ D (k p q)β(q, p)θ m (q)θ m (p) = 0 ( ) ( ( δ x(k) L = 3 ĉ 2 s w Hδx(k) (1+w) L 1+9 ĉ 2 s w θ x(k) L = (1 3ĉ ) 2 s Hθx(k)+ L ĉs 2 k 2 (1+w) δl x(k) ) H 2 k 2 ) θ L x(k) + 3 2 H2( Ω m δ L m (k)+ω x δ L x (k))

Linear DE approximation δ m (k)+θ m (k)+ d 3 p d 3 qδ D (k p q)α(q, p)θ m (q)δ m (p) = 0 θ m (k)+hθ m (k)+ 3 ( 2 H2 Ω m δ m (k) 1+ Ω xδx(k) L ) Ω m δ m(k) L + d 3 p d 3 qδ D (k p q)β(q, p)θ m (q)θ m (p) = 0 ( ) ( ( δ x(k) L = 3 ĉ 2 s w Hδx(k) (1+w) L 1+9 ĉ 2 s w θ x(k) L = (1 3ĉ ) 2 s Hθx(k)+ L ĉs 2 k 2 (1+w) δl x(k) ) H 2 k 2 + 3 2 H2( Ω m δ L m (k)+ω x δ L x (k)) ) θ L x(k) P T (k) Ω 2 m P [TRG] m (k)+2ω m Ω x δ L m(k)δ L x(k) +Ω 2 x δ L x(k) 2

0.10 w 0.8 z 0 0.08 0.06 Matter power spectrum lin P P sm lin P sm 0.04 0.02 0.00 0.01 0.015 0.02 0.03 0.05 0.07 0.1 0.15 0.2 k h Mpc

0.6 w 0.8 z 0 0.5 0.4 Total power spectrum lin P P sm lin P sm 0.3 0.2 0.1 0.0 0.05 0.10 0.15 0.20 k h Mpc

0.20 w 0.8 z 1 0.15 Total power spectrum lin P P sm lin P sm 0.10 0.05 0.00 0.05 0.10 0.15 0.20 k h Mpc

Matter growth factor and index δ m a g m(a) = g m (a i ) exp a a i (Ω c (ã) γm 1) dã ã for wcdm : γ m 0.55+0.05[1+w(z = 1)] δ x g m and γ m scale and redshift dependent δ m changes by max. 1% (linear) γ m changes by max. 5% (linear) ( ) γ m = (logω m ) 1 d logδm log dη

Matter growth factor and index δ m a g m(a) = g m (a i ) exp a a i (Ω c (ã) γm 1) dã ã for wcdm : γ m 0.55+0.05[1+w(z = 1)] δ x g m and γ m scale and redshift dependent δ m changes by max. 1% (linear)/ 3.5% (non linear) γ m changes by max. 5% (linear)/ 10 15% (non linear) ( ) γ m = (logω m ) 1 d logδm log dη Non linearities enhance the clustering and are nearly independent on ĉ s

0.55 Γ k 0.1 h Mpc 0.50 0.45 Matter growth index w 0.8 0.40 0.2 0.4 0.6 0.8 1.0 a

1.0 0.8 g k 0.1 h Mpc 0.6 0.4 Total growth 0.2 w 0.8 0.2 0.4 0.6 0.8 1.0 a

Summary of assumptions and approximations 1. constant w and 0 ĉ s 2 1 2. zero anisotropic stress 3. γ = 1 4. k H 5. u = 0 6. perturbations up to O(2) 7. terms ϕ a ϕ b neglected 8. zero trispectrum 9. k Ω ab = 0 10. linear treatment of DE perturbations And some references: - TRG. arxiv:0806.0971. Pietroni. - Growth index. arxiv:0807.3343. Ballesteros and Riotto - Dectectability of ĉ s 2. arxiv:1004.5509. Ballesteros & Lesgourgues - arxiv:1101.1026. Sefusatti and Vernizzi - Zero sound speed, TRG. arxiv:1106.0314. D Amico and Sefusatti - Most of this talk. arxiv:1106.0834. Anselmi, Ballesteros & Pietroni

Conclusions For DE (with constant w and ĉ s ) [and no anisotropic stress] we saw: DE fluctuations must be considered and ĉ s should be non adiabatic Planck + LSST: will set a lower bound on ĉ s Non linearities: needed for future precision observations (Euclid...) DE perturbations can accurately be treated linearly Corrections to Pm nearly independent on ĉ s (below 1%) Outlook: tomographic surveys, montecarlo sampling, N body...