An Experimental Study of Counter flow Concentric Tube Heat Exchanger using CuO / Water Nanofluid

Similar documents
Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Heat Transfer Enhancement in Fe3O4-water Nanofluid through a Finned Tube Counter Flow Heat Exchanger

Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid

Numerical Study of Forced Convective Heat Transfer of Nanofluids inside a Vertical Tube

NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW

Research Article Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

Received 31 December 2015; revised 16 October 2016; accepted 21 November 2016; available online 10 June 2017

Australian Journal of Basic and Applied Sciences. Thermal Performance of Spiral Tube Heat Exchanger using Nano Fluid Experimental Study

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS

EFFECT OF TWISTED TAPE INSERTS IN DOUBLE PIPE HEAT EXCHANGER USING AL2O3/WATER NANO FLUIDS

A Study On The Heat Transfer of Nanofluids in Pipes

Amir Houshmand, Ahmad Sedaghat, Kia Golmohamadi and Mohamadreza Salimpour

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

Effectiveness and Overall Heat Transfer Coefficient of Fe 3 O 4 /Water Nanofluid Flow in a Double Pipe Heat Exchanger with Return Bend

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015

Experimental Investigation of plate heat exchanger using Nanofluids

Untersuchungen zum Wärmeübergang in einem quadratischen Mikrokanal mit Al 2 O 3 -H 2 O Nanofluid

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure.

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume6, Issue 5, November 2016

Investigations of Heat Transfer Augmentation for Turbulent Nanofluids Flow in a Circular Tube: Recent Literature Review

ABSTRACT I. INTRODUCTION II. BACKGROUND OF STUDY

Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer

CHARACTERISTICS OF HEAT TRANSFER AND PRESSURE DROP IN A CHEVRON-TYPE PLATE HEAT EXCHANGER WITH Al 2 O 3 -WATER NANOFLUIDS

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid

In this project a comparison of heat transfer and

Numerical Investigation of Turbulent Convective Heat Transfer of Various Nanofluids in Tube

Experimental Study of Spiral Heat Exchanger Performance in V- Trough Tube Collector by using Mono and Hybrid Nanofluids

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

HEAT TRANSFER ENHANCEMENT BY USING NANOFLUID JET IMPINGEMENT

Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1 st law of Thermodynamic in a Serpentine PVT System

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS

International Journal of Engineering Trends and Technology (IJETT) Volume-45 Number-8 -March 2017

Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe

Numerical Prediction of Forced Convective Heat Transfer and Friction Factor of Turbulent Nanofluid Flow through Straight Channels

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1

Experimental Investigation of Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO/water Nano fluid

Experimental Study of Heat Transfer Enhancement Using Water Based Nanofluids as a New Coolant for Car Radiators

Application of Artificial Neural Network Model in Calculation of Pressure Drop Values of Nanofluid

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER

Research Article Numerical Study of Laminar Flow Forced Convection of Water-Al 2 O 3 Nanofluids under Constant Wall Temperature Condition

A. Zamzamian * Materials and Energy Research Center (MERC), Karaj, I. R. Iran

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Investigation of Heat Transfer Enhancement in Laminar Flow through Circular Tube Combined Wire Coil and Wavy Strip with Central Clearance

EXPERIMENTAL HEAT TRANSFER ANALYSIS OF MAGNETIC MICRO FLUID IN THE PRESENCE OF MAGNETIC FIELD

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

STUDY OF TURBULENT HEAT TRANSFER OF THE NANOFLUIDS IN A CYLINDRICAL CHANNEL. Siberian Federal University, Krasnoyarsk 3

Application of Nano-Fluids as Coolant in Heat Exchangers: A Review

Comparison of nanofluid heat transfer properties with theory using generalized property relations for EG-water mixture

Kersten Grote. B.Eng.(Hons.) (Pretoria) Thesis submitted to the University of Pretoria in candidature for the degree of Masters in Engineering

Study of Forced Convection Heat Transfer with Single phase and mixture phase Nanofluid Model at different Reynolds Numbers

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS

International Journal of Advanced Engineering Research and Studies E-ISSN

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:18 No:02 1

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India

Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO 2. - Nanofluid Coolant

Heat Transfer Augmentation of Heat pipe using Nanofluids

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection

Heat Transfer Enhancement Using a Rotating Twisted Tape Insert

Australian Journal of Basic and Applied Sciences. Numerical Study of a Concentric Tube Heat Exchanger Using Dimpled Tubes with Al 2 o 3 NanoFluid

ENHANCEMENT OF HEAT TRANSFER RATE IN A RADIATOR USING CUO NANOFLUID

Investigation of Heat Transfer on Smooth and Enhanced Tube in Heat Exchanger

Vijayawada, AP. Fig Two-Step Mixing Procedure Diagram of Nano- Fluid

Laminar forced convective heat transfer of Al 2 O 3 /water nanofluids

International Journal of Emerging Technologies in Engineering Research (IJETER)

Flow Boiling Heat Transfer in Small Diameter Channels Using Nano Fluids: A Review

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

INVESTIGATION OF TiO 2 -WATER NANOFLUID BEHAVIOR THROUGH A WAVY CORRUGATED PIPE IN TERMS OF HEAT TRANSFER AND PUMPING POWER

This is a repository copy of Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer.

Convective Heat Transfer of Al 2 O 3 and CuO Nanofluids Using Various Mixtures of Water- Ethylene Glycol as Base Fluids

Heat Transfer Co-efficient and Effectiveness for Water Using Spiral Coil Heat Exchanger: A Comprehensive Study

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Heat Transfer Enhancement by using Al 2 O 3 -Water Nanofluid in a Liquid Cooling System for Microprocessors

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 1, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

Design, Fabrication and Testing Of Helical Tube in Tube Coil Heat Exchanger

Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids

Computer-Aided Simulation of Heat Transfer in Nanofluids

EXPERIMENTAL STUDIES OF THERMAL CONDUCTIVITY, VISCOSITY AND STABILITY OF ETHYLENE GLYCOL NANOFLUIDS

Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger

A Study of Heat Transfer with Nanofluids

PLATE TYPE HEAT EXCHANGER. To determine the overall heat transfer coefficient in a plate type heat exchanger at different hot fluid flow rate

Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts

Research Article. Kaustubh G. Kulkarni * and Mandar M. Lele. Abstract

Improving Performance in Engine Cooling System using Nanofluid-Based Coolant

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Measuring Thermal Conductivity of Nanofluid by New Method

Research Article Experimental Research on Heat Transfer Characteristics of CuO Nanofluid in Adiabatic Condition

Optimization of Double Pipe Heat Exchanger with Response Surface Methodology Using Nanofluid and Twisted Tape

An Introduction to the. NanoFluid. By Amin Behzadmehr Hassan Azarkish

APPLICATION OF NANOTECHNOLOGY TO IMPROVE THE PERFORMANCE OF TRACTOR RADIATOR USING CU-WATER NANOFLUID

EXPERIMENTAL AND NUMERICAL STUDY THE HEAT TRANSFER OF FLAT PLATE SOLAR COLLECTOR BY USING NANOFLUID UNDER SOLAR SIMULATION

NANOFLUIDS. Abstract INTRODUCTION

A Review of Forced Convection Heat Transfer and Pressure Drop in Shell and Helical Coiled Tube Heat Exchanger of Nanofluids

Research Article Numerical Study of Fluid Dynamic and Heat Transfer in a Compact Heat Exchanger Using Nanofluids

Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers

EXPERIMENTAL AND THEORETICAL ANALYSIS OF TRIPLE CONCENTRIC TUBE HEAT EXCHANGER

Laboratory/Demonstration Experiments in Heat Transfer: Laminar and Turbulent Forced Convection Inside Tubes. Abstract

HEAT TRANSFER CHARACTERISTICS OF PROPYLENE GLYCOL/WATER BASED MAGNESIUM OXIDE NANOFLUID FLOWING THROUGH STRAIGHT TUBES AND HELICAL COILS

ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES JINGWEI ZHU

Transcription:

An Experimental Study of Counter flow Concentric Tube Heat Exchanger using CuO / Water Nanofluid 1 Mr. Vatsal. S. Patel M.E.[Thermal Engg.] Student Department of Mechanical Engineering, S.V.M. Institute of Technology, Bharuch Gujarat. 2 Dr. Ragesh. G. Kapadia Professor and Principle, Department of Mechanical Engineering, S.V.M. Institute of Technology, Bharuch Gujarat. 3 Dr. Dipak A. Deore Asst.Professor and HOD, Department of Chemical Engineering, S.V.M. Institute of Technology, Bharuch Gujarat. Abstract Nano fluid is a fluid having nano size particles, dispersed in the conventional base fluids such as water, engine oil, ethylene glycol, which tremendously enhances the heat transfer characteristics of original fluid. Because of this fluid containing suspensions of metallic nanoparticles and have higher thermal conductivity. In the present study, we have experimentally investigated effect of addition of 1 wt. % CuO nanoparicles in base cold fluid using counter flow concentric tube heat exchanger. The heat transfer coefficient and friction factor of the CuO Water nanofluid flowing in a counter flow concentric tube heat exchanger under turbulent flow conditions are investigated. The results show that the convective heat transfer coefficient of nanofluid is higher than that of the base liquid by about 3.45 9.5%. The heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate of the hot water and nanofluid. 1. Introduction ˮ Heat exchangers play an important part in the field of energy conservation, conversion and recovery. Several studies have focused on direct transfer type heat exchanger, where heat transfer between fluids occurs through a separating wall or into and out of a wall in a transient manner. There are two important phenomena happening in a heat exchanger: fluid flow in channels and heat transfer between fluids and channel walls. Thus, improvements to heat exchangers can be achieved by improving the processes occurring during those phenomena. Firstly the rate of heat transfer depends on the surface area to volume ratio, which means the smaller channel dimensions provide the better heat transfer coefficient. Secondly, improving the properties of the heat transfer fluids (nanofluids) can yield higher heat transfer coefficient in a heat exchanger. In recent years, modem technologies have permitted the manufacturing of particles down to the nanometer scale, which have created a new class of fluids, called nanofluid. The application of nanofluids or fluids containing suspensions of metallic nanoparticles to confront heat transfer problems in thermal management is one of the technological uses of nanoparticles that hold enormous promise today. Experiments have shown that nanofluids have improved thermal conductivities when compared to the base fluids and enhancement in the heat transfer coefficient. In the present study, we have fabricated concentric tube heat exchanger to investigate the thermal performance of heat exchanger using nanofluid. We also have synthesized the CuO nanoparticles. We have experimentally investigated effect of addition of 1 wt. % CuO nanoparicles in base cold fluid using counter flow concentric tube heat exchanger. 2. Experimental methods ˮ 2.1 Fabrication of Concentric tube Heat exchanger ˮ The experimental set-up for measuring the convective heat transfer coefficient is shown schematically in Fig 2.1. It mainly consist of a concentric tube heat exchanger, hot and cold water circulation pumps, storage water tanks, heater, digital temperature indicator and flowmeters. Cold water flows through inner tube in one direction only and hot water flows in an annulus. Direction 914

of cold fluid flow can be changed from parallel or counter to hot water so that unit can be operated as parallel or counter flow heat exchanger. Flow rates of hot and cold water are measured using rotameters. A by-pass valve is used to reduce the load on the pump. A pump is used to circulate the hot water from a re-cycled type water tank, which is fitted with heater and thermostat. The test section was a straight copper tube having a 9.35 mm inner diameter and while the outer tube is made from stainless steel and has a 33.5 mm inner diameter. The test section is thermally isolated from its upstream and downstream section by asbestos rope in order to reduce the heat loss along the axial direction. For measurement of the temperature of inlet and outlet condition, RTD/ PT -100 sensors are used. Figure - 2.1 : The schematic of experimental setup Measurements were carried out after 30 min when the system reached steady state at different mass flow rate of hot and cold fluid. 2.2 Synthesis of Nanoparticle ˮ In this method, CuO nanoparticle is synthesized with a wet chemical method. It has the advantages in terms of controlling the particle size, reducing agglomeration of the nanoparticles, and producing nanofluids in a large scale. This method is a promising technique for commercial synthesis of nanofluids as shown in Fig.2. In a typical procedure [19], 2.395 gms of copper acetate [Cu(CH 3 COO) 2 ] is dissolved in 60 ml of water and make solution of Copper acetate (Cu(CH3COO) 2 H 2 O) then add 0.6 ml of glacial acetic acid. heat the reaction mixture upto 15 min. then add 3ml NaOH solution (0.96 gm NaOH in 3ml Water). The color of the solution turned from blue to black immediately, and a black suspension formed simultaneously. The obtained mixture boil for 2 hours. [19] Figure 2.2. CuO nanoparticles using Wet chemical method Then mixture was cooled to room temperature. Then, a wet CuO precipitate was obtained. The wet precipitate was washed twice with distilled water to remove the impurity ions. filter it with filter paper and dry the particles. Finally obtained particle is as shown in figure. Table - 2.2. : Thermophysical properties of water and nanoparticles Obtain particles are dispersed in base fluid with help of surfactant (SDS - Sodium Dodecyle Sulphate) to make colloidal mixture. 2.3 Effect on the Thermophysical properties Property Water Cu Al 2O 3 CuO TiO 2 C (J / kg K) 4179 385 765 535.6 686.2 ρ (kg / m 3 ) 997.1 8933 3970 6310 4250 K (W / m K) 0.605 400 40 76.5 8.9538 of nanofluid ˮ The density is calculated from Pak and Cho using the following equation: ρ nf = ρ p + (1- ) ρ w where is the volume fraction of the nanoparticles, ρ p is the density of the nanoparticles and ρ w is the density of the base fluid. 915

Drew and Passman suggested the well-known Einstein equation for calculating the viscosity, which is applicable to spherical particles in volume fractions of less than 5.0 vol.% and is defined as follows: nf = (1 + 2.5 ) where nf is the viscosity of the nanofluid and w is the viscosity of the base fluid. The specific heat is calculated from Xuan and Roetzel as follows: (ρcp) nf = (ρcp) p + (1- )(ρcp) w where (ρcp) nf is the heat capacity of the nanofluid, (ρcp) p is the heat capacity of the nanoparticles and (ρcp) w is the heat capacity of the base fluid. The thermal conductivity of the nanofluid is calculated from Yu and Choi using the following equation: w Moreover, the Pak and Cho and Xuan and Li correlations for predicting the Nusselt number for nanofluid are compared with the results which are defined as follows: The Pak and Cho correlation is defined as: Nu nf = 0.021 The Xuan and Li correlation is defined as: Nu nf = 0.0059 (1.0 + 7.6286 ϕ 0.6886 ) The Reynolds number of the nanofluid is defined as: Re nf = The Prandtl number of the nanofluid is defined as: K nf = K w Pr nf = where k nf is the thermal conductivity of the nanofluid, K p is the thermal conductivity of the nanoparticles, K w is the thermal conductivity of the base fluid and is the ratio of the nanolayer thickness to the original particle radius. Thermal conductivities of two kinds of nanofluids, copper oxide distilled water and also aluminadistilled water, in temperature range of 20 C to 50 C were studied. Results show an increase in the thermal conductivity coefficient by increasing the temperature and also particle concentrations. Thermal conductivity of nanofluids was also increased by increasing the thermal conductivity of particles. Some new correlations were also suggested to measure the thermal conductivity of the nanofluids. [ 20 ] The Peclet number of the nanofluid is defined as: Pe nf = where d p is the diameter of the nanoparticles. In order to calculate the Peclet number, the thermal diffusivity of the nanofluid ( nf ) is defined as: nf = From the above equations we can find the thermophysical properties of nanofluids. There is a effect of particle volume concentration on thermophysical properties of nanofluid.using the correlation of this properties for nanofluid we can see the effect on it. 2.3.1. Effect on Density of nanofluid : Before starting to determine the convective heat transfer coefficient and friction factor of the nanofluid, the reliability and accuracy of the experimental system are estimated by using water as the working fluid. Using Pak and Cho relation in figure 4.1, it is concluded that if we increase the volume concentration of nanoparticles then increase in density of nanofluid. 916

nf 3600 3400 3200 3000 2800 2600 2400 2200 1800 1600 1400 1200 Cu + Water TiO 2 + Water 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Figure - 2.3.1 : Effect on density due to volume concentration 2.3.2. Effect on Specific heat of nanofluid : Using Xuan and Roetzel correlation in figure 4.2, it can concluded that there is a decrease in specific heat with increase in the volume fraction. Cnf 4000 3500 3000 2500 1500 Cu + Water TiO 2 + Water Knew [Yuan & Choi] Knf [S.Sh.Hosseini, New method] 1.25 1.2 1.15 1.1 1.05 0.95 0.9 2 1.8 1.6 1.4 1.2 1 0.8 Cu + Water TiO 2 + Water 0.6 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 1 0.85 1 1.5 2 2.5 3 3.5 4 T nf = 35 [c] Volume concentration T w = 53 [c] Figure - 2.3.3 : Effect on Thermal conductivity due to volume fraction 3. Result and Discussion ˮ The experiments were carried out by varying the mass flow rate of hot and cold fluid to investigate the effect of nanofluid on heat transfer coefficent. First, the test is carried out with Water / Water, then adding nanoparticles in base cold fluid by 1% wt. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Figure - 2.3.2 : Effect on Specific heat due to volume fraction 2.3.3. Effect on Thermal conductivity of nanofluid : Most important property is thermal conductivity, Using Yuan and Choi relation we observe that there is a enhancement in thermal conductivity with increase in volume concentration of nanoparticle in base fluid. A temperature dependent thermal conductivity model by S.Sh. Hosseini shows a better enhancement in thermal conductivity. It is a easy and economic method to determine it. 1) Effect of mass flow rate of cold fluid on overall heat transfer coefficient : As shown in fig. 3.1, the heat transfer coefficient increases with increases with increase in mass flow rate of cold fluid keeping constant hot water mass flow rate at 0.048 kg/s. The inlet temperature of hot water is 53.1 C and Cold fluid is 35.2 C. At this mass flow rate it is observed that there is a enhancement in heat transfer coefficient by addition of 1 % wt of nanoparticle. The approximate increase in heat transfer coefficient is found to be in range of 3.5% to 8.6%. 917

Uo Uo 35 1800 m h = 0.048 kg/s CuO[1% wt.] / Water Water / Water 30.5 N up N ud NuX 1600 1400 1200 N ud, N up, N ux 26 21.5 17 800 600 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 12.5 1500 2500 3000 3500 4000 4500 5000 R enf Figure - 3.1 : Comparison of heat transfer coefficient obtained from water and that from the 1% wt. of CuO nanoparticles dispersed in water. 2200 1800 1600 1400 1200 800 m h = 0.062 kg/s CuO [1%wt.] / Water Water / Water m c 600 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 Figure - 3.2 : Comparison of heat transfer coefficient obtained from water and that from the 1% wt. of CuO nanoparticles dispersed in water. m c Figure - 3.3 : Comparison of Nusselt number Vs Reynolds number using different correlation From the experiment it is found that the Nusselt number increases with Reynolds number. Fig. 3.3 shows that the calculated values of Nusselt number using Pak and Cho correlation gives better agreement to the behaviour of nanofluid than the Dittus-Bolter and Xuan and Li correlation. 3) Effect of mass flow rate of cold fluid on convective heat transfer coefficient using different correlation : 3500 3050 hnd, hnp, hnx 2600 2150 1700 h np h nd h nx As the hot water mass flow rate is increased from 0.048 kg/s to 0.062 kg/s, it is observed that there is a enhancement in heat transfer coefficient in the range approximately 6.42 % - 10 % shown in fig. 3.2. 2) Effect of Reynolds number on Nusselt number of nanofluid using different correlation: 1250 0.008 0.012 0.016 0.02 0.024 0.028 0.032 m nf Figure - 3.4 : Effect of mass flow rate of nanofluid on convective heat transfer coefficient based on different correlation As shown in Fig. 3.4, the convective heat transfer coefficient increases with increases in mass flow rate of nanofluid. 4) Effect of mass flow rate on effectiveness: As shown in Fig. 3.5, effectiveness is increases with increase in the mass flow rates of hot fluid and cold fluid. 918

Friction factor Effectiveness 0.56 0.54 0.52 0.5 0.48 m h = 0.048 kg/s m h = 0.062 kg/s Experiments are carried out to study the effects of the mass flow rate of the cold fluid as well as hot fluid on the heat transfer coefficient and flow characteristics. The following conclusions have been obtained: 0.46 0.44 0.42 0.4 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 m nf [mass flow rate of cold fluid] Figure - 3.5 : Effectiveness Vs mass flow rate of nanofluid 5) Friction factor : 0.014 0.0135 0.013 0.0125 0.012 0.0115 0.011 0.0105 Water CuO [1%wt] + Water The use of CuO water nanofluid significantly gives higher heat transfer coefficients in the range approximately 3.45% - 9.5% than those of the pure base fluid. There is an enhancement in the heat transfer process because the suspended ultra-fine particles remarkably increase the thermal conductivity of the nanofluid. Pak and Cho correlation for predicting the heat transfer coefficient of a nanofluid agreed better with the results of this experiment than the Xuan and Li correlation. The convective heat transfer coefficient, overall heat transfer coefficient and effectiveness increases with an increasing Reynolds number and an increasing mass flow rate of the cold fluid and hot fluid. The friction factor of the nanofluid are approximately the same as those of water in the given conditions. This implies that the nanofluid incurs no penalty of pump power and may be suitable for practical application. 5. References ˮ 1750 2200 2650 3100 3550 4000 Reynolds number Figure - 3.6 : Comparison of friction factor for water and CuO/Water nanofluid As shown in Fig. 3.6, the friction factors of the nanofluid agree well with those of water data under the same Reynolds number at hot water flow rate is 0.048 kg/s. This may be because the small additional nanoparticles in the base liquid do not cause the change in the flow behaviour of the fluid. This means that the nanofluid will not cause a penalty drop in pressure and there is no need for additional pump power. 4. Conclusion ˮ The convective heat transfer performance and flow characteristic of a CuO water nanofluid prepared by wet chemical method, flowing in a fabricated counter flow concentric tube heat exchanger is experimentally investigated. [1] Gupta H.K, Agrawal G.D, Mathur J, "An overview of nanofluids: A new media towards Green environment ", IJES,Volume 3, No 1, 2012. [2] Weerapun Duangthongsuk, Somchai Wongwises, "Heat transfer enhancement and pressure drop characteristics of Tio2 Water nanofluid in a double-tube counter flow heat exchanger", International journal of heat and mass transfer, 52 (2009), 2059 2067. [3] Yimin Xuan, Qiang Li, "Heat transfer enhancement of nanofuids", International journal of heat and fluid flow, 21 (), 58-64. [4] Parham Naderia, A.Moharrerib, H.Goshayshic, "An experimental study on the heat transfer performance of sio 2 -water nanofluid in a double pipe heat exchanger". [5] Anchupogu.Praveen, Penugonda Suresh Babu, Venkata Ramesh Mamilla, "Analysis on heat transfer in nanofluids for Al 2 o 3 / Water", International journal of advanced scientific research and technology, Volume 2 (April 2012). [6] Om Shankar Prajapati, "Effect of Al 2 O 3 -Water nanofluids in convective heat transfer", International journal of nanoscience,vol. No. 1 (2012), 1-4. 919

[7] Amirhossein Zamzamian, Shahin Nasseri Oskouie, Ahmad Doosthoseini, Aliakbar Joneidi, Mohammad Pazouki,"Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al 2 O 3 /EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow", Experimental thermal and fluid science, 35 (2011), 495 502. [8] Masoud Haghshenas Fard, Mohammad Reza Talaie B, And Somaye Nasr, " Numerical and experimental investigation of heat transfer of ZnO / Water nanofluid in the concentric tube", Thermal science, Year 2011, Vol. 15, No. 1, 183-194. [19] Haitao Zhu, Dongxiao Han, Zhaoguo Meng, Daxiong Wu, Canying Zhang, "Preparation and thermal conductivity of CuO nanofluid via a wet chemical method", Nanoscale Research letters - Springer Open Journal, 2011. [20] S.Sh. Hosseini, N.M. Adam, B.Z.Azmi, A. Ahmadi, A. Shahrjerdi, "Measuring Thermal Conductivity of Nanofluid by New Method ", Australian Journal of Basic and Applied Sciences, 5(9): 985-996, ISSN 1991-8178,2011 [9] N. Bozorgan, "Evaluation of using Al 2 O 3 / EG and TiO 2 / EG nanofluids as coolants in the double-tube heat exchanger" Advanced design and manufacturing technology, Vol. 5/ No. 2/ March - 2012. [10] Sarit Kumar Das, Stephen U. S. Choi, "Heat transfer in nanofluids A review", Heat transfer engineering, 27(10), 3 19, 2006. [11] P. C. Mukesh Kumar, J. Kumar, "Heat transfer and friction factor studies in helically coiled tube using Al 2 O 3 / Water nanofluid", European journal of scientific research, ISSN 1450-216x, Vol.82, No.2 (2012), 161-172. [12] S. M. Sohel Murshed, Kai Choong Leong, Chun Yang And Nam-Trung Nguyen "Convective heat transfer characteristics of aqueous Tio 2 nanofluid under laminar flow conditions". [13] L. Syam Sundar, K.V. Sharma, "Laminar convective heat transfer and friction factor of Al 2 O 3 nanofluid in circular tube fitted with twisted tape inserts", International journal of automotive and mechanical engineering (IJAME),ISSN: 1985-9325, Volume 3, 265-278, January-June 2011. [14] Yimin Xuan, Qiang Li, "Investigation on convective heat transfer and flow features of nanofluids", Journal of heat transfer, 2002. [15] Yurong He, Yi Jin, Haisheng Chen, Yulong Ding, Daqiang Cang, Huilin Lu. " Heat transfer and flow behaviour of aqueous suspensions of TiO 2 nanoparticles (nanofluids) flowing upward through a vertical pipe ". International journal of heat and mass transfer, 50 (2007), 2272 2281. [16] Chandrasekar Murugesan, Senthilkumar Tamilkolundu," Mechanism of forced convective heat transfer in Al 2 O 3 / Water nanofluid under laminar and turbulent flow", International conference on chemical, ecology and environmental sciences (ICCEES'2012) Singapore, April 28-29, 2012. [17] Sadollah Ebrahimi, Anwar Gavili, Maryamalsadat Lajevardi," New class of coolants: nanofluids". [18] P. Sivashanmugam, "Application of nanofluids in heat transfer". 920