ksi a b 8.1 (a) B = stress = y / 0.1; A = strain = x / 10 Let, E(B A = a) = + a a i Nos. a i b i a i b i

Similar documents
The middle point of each range is used to calculated the sample mean and sample variance as follows:

PROBABILITY PRIMER. Exercise Solutions

Chapter 11: Simple Linear Regression and Correlation

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

Linear Regression Analysis: Terminology and Notation

Chapter 9: Statistical Inference and the Relationship between Two Variables

STAT 511 FINAL EXAM NAME Spring 2001

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

STATISTICS QUESTIONS. Step by Step Solutions.

Statistics for Business and Economics

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Statistics II Final Exam 26/6/18

Statistics MINITAB - Lab 2

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

FUZZY FINITE ELEMENT METHOD

SIMPLE LINEAR REGRESSION

Learning Objectives for Chapter 11

Chapter 14 Simple Linear Regression

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

Comparison of Regression Lines

Statistics for Economics & Business

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

The Ordinary Least Squares (OLS) Estimator

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

STAT 3008 Applied Regression Analysis

Activity #13: Simple Linear Regression. actgpa.sav; beer.sav;

18. SIMPLE LINEAR REGRESSION III

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

Basic Business Statistics, 10/e

28. SIMPLE LINEAR REGRESSION III

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

Scatter Plot x

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

/ n ) are compared. The logic is: if the two

Modeling and Simulation NETW 707

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Economics 130. Lecture 4 Simple Linear Regression Continued

LAB 4: Modulus of elasticity

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

In this section is given an overview of the common elasticity models.

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

PhysicsAndMathsTutor.com

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

β0 + β1xi and want to estimate the unknown

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Chapter 15 - Multiple Regression

Negative Binomial Regression

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

e i is a random error

Statistics Chapter 4

Chapter 13: Multiple Regression

Composite Hypotheses testing

January Examinations 2015

a. (All your answers should be in the letter!

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Correlation and Regression

Linear Approximation with Regularization and Moving Least Squares

Unit 10: Simple Linear Regression and Correlation

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

Biostatistics 360 F&t Tests and Intervals in Regression 1

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

DUE: WEDS FEB 21ST 2018

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Regression. The Simple Linear Regression Model

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example

Chemometrics. Unit 2: Regression Analysis

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Some basic statistics and curve fitting techniques

F8: Heteroscedasticity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

Chapter 8 Indicator Variables

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

Introduction to Regression

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Supplementary Notes for Chapter 9 Mixture Thermodynamics

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

Transcription:

8. (a) B = stress = / 0.; A = stran = / 0 Let, E(B A = a) = + a Nos. a b a b a b 90-4 0 90-3 80-8 00 00-4 0 400-3 4000-8 400 3 80-4 30 840-3 7840-8 900 4 40-4 40 640-3 680-8 600 5 50-4 50 600-3 7040-8 500 6 630-4 60 3780-3 3969 0-8 3600 30-4 0 9350-3 9690-8 900 4 30 4 a 35.50, 6 0 b 35 6 a 3 b nab 9350 63535.50 8 a na 9690 635.5 0 = 9. 0 3 k/n 3 4 = b a 35 9.0 35.50 35 3.7. 3 o Young s modulus = = 9. 0 3 k/n 4 8 (b) Assume E(B A = a) = a 6 ( b ) a Now, 6 ( b a )( a ) 0 or, a b 3 3 a 9350 9690 8 9.70 ks

8.4 (a) Plot of per capta energ consumpton vs per capta GNP Per Capta Energ Consumpton 5000 4500 4000 3500 3000 500 000 500 000 500 Y Y' lower upper 0 0 000 4000 6000 8000 0000 000 Per Capta GNP (b) Countr # Per Capta GNP Per Capta Energ Consumpton X Y X Y XY Y'=a+bX (Y-Y') 600 000 360000 000000 600000 950.37 463.69 700 700 790000 490000 890000 535.64 69886.734 3 900 400 840000 960000 4060000 59.38 3664.478 4 400 000 7640000 4000000 8400000 953.68 45.38 5 300 500 960000 650000 7750000 647. 774.944 6 5400 700 960000 790000 4580000 88. 69643.906 7 8600 500 73960000 650000 500000 379.96 4634.3

8 0300 4000 06090000 6000000 400000 3653.74 9893.03 Total: 37800 6800 550000 4340000 99980000 880.796 On the bass of calculatons n the above table we obtan the respectve sample means of X and Y as, X = 37800/8 = 475, Y = 6800/8 = 00 and correspondng sample varances, (550000 8 475 ) 055985.7, 7 (4340000 8 00 ) 374.86 7 From Eq. 8.4 & 8.3, we also obtan, 99980000 8 475 00 0.79, = 00 0.79475 = 78.75 550000 8 475 (c) From Eq. 8.9, the correlaton coeffcent s, n n ˆ s s n 7 99980000 8 475 00 055985.7 374.86 0.85 (d) From Eq. 8.6a, the condtonal varance s, n ' Y X ( ) n = 887.55 / 6 = 36980.799 Y X and the correspondng condtonal standard devaton s = 608.3 (e) To determne the 95% confdence nterval, let us use the followng selected values of X = 600, 5400 and 0300, and wth t 0.975,6 =.447 from Table A.3, we obtan, At X = 600;

Y X (600 475) 0.95 950.37.447608.3 (6.63 835.997) 8 (550000 8 475 ) At X = 5400; Y X (5400 475) 0.95 88..447608.3 (749.407 87.53) 8 (550000 8 475 ) At X = 0300; Y X (0300 475) 0.95 3653.74.447608.3 (556.39 4754.469) 8 (550000 8 475 ) (f) mlarl,. 588, = -709.673 and = 853.080 for predctng the per capta X Y GNP on the bass of the per capta energ consumpton.

8.8 Cost vs floor area 50 00 thousand $ 50 00 50 0 0 3 4 000 sq ft (a) The standard devaton of Y s 0. 005 = 0.05. When X = 0.35, the mean of Y s E(Y X = 0.35) =.0.35 + 0.05 = 0.44, hence P(Y > 0.3 X = 0.35) = P(Y 0.3 X = 0.35) 0.3 0.44 = ( ) = 0.9977 0.05 Also, as preparaton for part (b), f X = 0.4 E(Y X = 0.4) =.0.4 + 0.05 = 0.498 P(Y > 0.3 X = 0.4) = P(Y 0.3 X = 0.4) 0.3 0.498 = ( ) 0.05 = 0.999963 (b) (c) Theorem of total probablt gves P(Y > 0.3) = P(Y > 0.3 X = 0.35)P(X = 0.35) + P(Y > 0.3 X = 0.4)P(X = 0.4) = 0.9977(/5) + 0.999963(4/5) 0.9995 Let Y A and Y B be the respectve actual strengths at A and B. nce these are both normal, Y A ~ N(0.44, 0.05); Y B ~ N(0.498, 0.05), Hence the dfference D = Y A Y B ~ N(0.44 0.498, 0.05 0.05 ),.e. D ~ N( 0.056, 005. 0 ) Hence P(Y A > Y B ) = P(Y A Y B > 0) = P(D > 0)

= [ 0 ( 0.056) ] 0.005 = (0.79959595) = 0.785807948 0.4

8.0 (a) Car # Rated Mleage (mpg) Actual Mleage (mpg) X Y X Y XY Y'=a+bX (Y-Y') 0 6 400 56 30 5.54 0.5 5 9 65 36 475 9.9 0.086 3 30 5 900 65 750 3.05 3.807 4 30 900 484 660 3.05.00 5 5 8 65 34 450 9.9.67 6 5 5 44 80.78 0.048 Total: 45 3675 94 835 6.97 On the bass of calculatons n the above table we obtan the respectve sample means of X and Y as, X =45/6 = 4., Y = /6 = 8.7 and correspondng sample varances, (3675 6 4. ) 34.7, (94 6 8.7 ) 0. 67 5 5 From Eq. 8.4 & 8.3, we also obtan, 835 6 4.8.7 0.75, = 8.7 0.754. = 0.5 3675 6 4. (b) From Eq. 8.9, the correlaton coeffcent s, n ˆ n s s n 835 6 4.8.7 0.97 5 34.7 0.67 From Eq. 8.6a, the condtonal varance s,

n ' Y X ( ) n = 6.97 / 4 =.73 and the correspondng condtonal standard devaton s Y X =.36 mpg. (c) Y Q = actual mlage of model Q car Y R = actual mlage of model R car X Q = rated mlage of model Q car = mpg E(Y Q ) = 0.5 + 0.75 = 7.03 mlarl E(Y R ) = 0.5 + 0.754 = 8.54 Hence Y Q = N(7.03,.3); Y R = (8.54,.3) Assume Y Q, Y R to be statstcall ndependent, P(Y Q > Y R ) = P(Y R - Y Q < 0) (8.54 7.03) = ( 0.809) 0..3

(d) To determne the 90% confdence nterval, let us use the followng selected values of X = 5, 0 and 30, and wth t 0.95,4 =.3 from Table A.3, we obtan, At X = 5; Y X (5 4.) 0.90.78.3.36 (9.446 4.4) mpg 6 (3675 6 4. ) At X =0; Y X At X = 30; (0 4.) 0.90 5.54.3.36 (4.066 7.04) mpg 6 (3675 6 4. ) Y X (30 4.) 0.90 3.05.3.36 (.33 6 (3675 6 4. ) 4.769) mpg

8.3 (a) Gven I = 6, E(D) = 0.5 + 56 = 00.5 (50 00.5) Hence P(D>50) = (.65) 0.95 0. 05 30 (b) Gven I = 7, E(D) = 0.5 + 57 = 5.5 Gven I = 8, E(D) = 0.5 + 58 = 30.5 Hence E(D) = E(D6)0.6 + P(D7)0.3 + E(D7)0. = 00.50.6 + 5.50.3 +30.50. = 08 mllon $

8.4 (a) Load Deflecton tons cm X Y X Y XY Y'=a+bX (Y-Y') 8.4 4.8 70.56 3.04 40.3 4.44 0.6 6.7.9 44.89 8.4 9.43 3.43 0.76 3 4.0.0 6 4 8.8 0.037 4 0. 5.5 04.04 30.5 56. 5.5 0.00 Total: 9.3 5. 35.49 65.70 3.85 0.440 On the bass of calculatons n the above table we obtan the respectve sample means of X and Y as, X =9.3/4 = 7.3, Y = 5./4 = 3.8 and correspondng sample varances, (35.49 4 7.3 ) 6.96, (65.70 43.8 ). 65 3 3 From Eq. 8.4 & 8.3, we also obtan, 3.85 47.33.8 0.599, = 3.8 0.5997.3 = -0.59 35.49 47.3 From Eq. 8.6a, the condtonal varance s, n ' Y X ( ) n = 0.44 / = 0.0 and the correspondng condtonal standard devaton s Y X = 0.469 cm.

(b) To determne the 90% confdence nterval, let us use the followng selected values of X = 4 and 0., and wth t 0.95, =.9 from Table A.3, we obtan, At X = 4; Y X At X =0.; (4 7.3) 0.90.8.90.469 (0.597 4 (35.49 47.3 ) 3.07) cm Y X (0. 7.3) 0.90 5.5.90.469 (4.4 4 (35.49 47.3 ) 6.65) cm (c) Under a load of 8 tons, E(Y) = -0.59 + 0.5998 = 4.0 cm Let 7 5 be the 75-percentle reflecton P(Y < 75 ) = 0.75 = 75 4.0 0.469 Hence 75 4.0 0.469 (0.75) 0.675 and 75 4.5cm

8.5 (a) Deformaton Brnell Hardness mm kg/mm X Y X Y XY Y'=a+bX (Y-Y') 6 68 36 464 408 68.65 0.49 65 45 75 6.88 9.70 3 3 59 69 348 767 59.8 0.03 4 44 484 936 968 47.00 9.000 5 8 37 784 369 036 38.88 3.543 6 35 3 5 04 0 9.4 6.699 Total: 5 305 89 6659 504 9.4 On the bass of calculatons n the above table we obtan the respectve sample means of X and Y as, X =5/6 = 9., Y = 305/6 = 50.8 and correspondng sample varances, (89 6 9. ).97, (6659 650.8 ) 30. 97 5 5 From Eq. 8.9, the correlaton coeffcent s, n n ˆ s s n 504 69.50.8 0.99 5.97 30.97 (b) From Eq. 8.4 & 8.3, we also obtan,

504 69.50.8.353, = 50.8 +.3539. = 76.765 89 69. From Eq. 8.6a, the condtonal varance s, n ' Y X ( ) n = 9.4 / 4 = 7.353 and the correspondng condtonal standard devaton s =.7 kg/mm. Y X (c) E(YX=0) = 76.765.3530 = 49.7 Hence, P(40<Y 50) = 50 49.7 40 49.7 (0.) ( 3.58) 0.544 0.000 0.544.7.7

8.6 (a) Car # Travel peed mph toppng Dstance ft X Y X Y XY Y'=a+bX (Y-Y') 5 46 65 6 50 4.48.384 5 6 5 36 30 3.9 7.370 3 60 0 3600 00 6600.07.5 4 30 46 900 6 380 5.8 39.437 5 0 6 00 56 60 3.08 8.50 6 45 75 05 565 3375 8.68 44.578 7 5 6 5 56 40.88 47.377 8 40 76 600 5776 3040 7.88 6.993 9 45 90 05 800 4050 8.68 69.77 0 0 3 400 04 640 3.68 0.465 Total: 95 53 55 37405 0665 47.536 On the bass of calculatons n the above table we obtan the respectve sample means of X and Y as, X =95/0 = 9.5, Y = 53/0 = 5.3 and correspondng sample varances, (55 0 9.5 ) 33.6, (37405 05.3 ) 3. 0 9 9 From Eq. 8.9, the correlaton coeffcent s, n n ˆ s s n 0665 0 9.55.3 0.99 9 33.6 3.0

(b) We can sa that there s a reasonable lnear relatonshp between the stoppng dstance and the speed of travel. Plot of stoppng dstance vs travel speed 0 00 toppng Dstance, n ft 80 60 40 0 0 0 0 0 30 40 50 60 70 Travel speed, n mph (c) E(Y X) = a + b + c ; let = o E(Y X) = a + b + c 95, ' 55, 49 ( ) 8.5, ( ' ') 86.06 0 4 ( )( ' ') 77387.5, ( )( ) 564 ( ' ')( ) 3589.5

9.5, ' 5.5, 49. 68.5 + c77387.5 = 564 and b77387.5 + c86.060 4 = 35895 564 det 35895 b 8.5 det 77387.5 77387.5 86.060 77387.5 4 86.060 4 3.348590.000 8.5 564 det 77387.5 35895.0644750 c 9.000.000 7 9 9 9.666 0.0053 = 49..6669.5 0.00535.5 = 49. 49.47 6.085 = -6.055 o E(Y X) = -6.055 +.666 + 0.0053 = ( ) = 376.55 376.55 s 53.793 ; s 7. 334 ft Y X Y X 0 (d) At a speed of 50 mph, the epected stoppng dstance s E(Y) = -6.055 +.6650 + 0.05350 = 90. Let 90 be the dstance allowed 90 90. P(Y < 90 ) = ( ) 0. 9 7.334 Hence, 90 90. 7.334 (0.9).8 and 90 7.334.8 90. 99.6 ft