Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Similar documents
Electronic Circuits Summary

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 11: J-FET and MOSFET

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

MOSFET Physics: The Long Channel Approximation

Practice 3: Semiconductors

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Chapter 6: Field-Effect Transistors

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ECE-305: Fall 2017 MOS Capacitors and Transistors

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Homework Assignment No. 1 - Solutions

Homework Assignment 09

MOS Transistor Theory

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Homework 6 Solutions and Rubric

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Microelectronics Part 1: Main CMOS circuits design rules

ECEN 325 Electronics

Biasing the CE Amplifier

MOS CAPACITOR AND MOSFET

Midterm 1 Announcements

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

CMOS Analog Circuits

MOS Transistor Properties Review

MOS Transistor Theory

ECE 305: Fall MOSFET Energy Bands

D is the voltage difference = (V + - V - ).

Chapter 4 Field-Effect Transistors

Operational Amplifiers

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

N Channel MOSFET level 3

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

Microelectronics Main CMOS design rules & basic circuits

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

Homework Assignment 08

ECE315 / ECE515 Lecture-2 Date:

Metal-Oxide-Semiconductor Field Effect Transistor

Time Varying Circuit Analysis

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

At point G V = = = = = = RB B B. IN RB f

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Section 4. Nonlinear Circuits

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture #27. The Short Channel Effect (SCE)

6.012 Electronic Devices and Circuits

MOS Transistor I-V Characteristics and Parasitics

MOSFET Capacitance Model

Lecture 11: MOSFET Modeling

MOSFET: Introduction

Metal-oxide-semiconductor field effect transistors (2 lectures)

The Gradual Channel Approximation for the MOSFET:

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

MOSFETs - An Introduction

Charge-Storage Elements: Base-Charging Capacitance C b

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

CMOS Inverter (static view)

ECE520 VLSI Design. Lecture 23: SRAM & DRAM Memories. Payman Zarkesh-Ha

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS (CONT D)

I. Frequency Response of Voltage Amplifiers

Lecture 37: Frequency response. Context

The Devices: MOS Transistors

6.012 Electronic Devices and Circuits Spring 2005

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Lecture 3: CMOS Transistor Theory

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Chapter 13 Small-Signal Modeling and Linear Amplification

Lecture 7: Transistors and Amplifiers

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

EE105 - Fall 2005 Microelectronic Devices and Circuits

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Long Channel MOS Transistors

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

The Devices. Devices

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

PHYS225 Lecture 9. Electronic Circuits

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Op Amp Packaging. Op Amps. JFET Application Current Source

FEEDBACK AND STABILITY

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A

ECE 342 Electronic Circuits. 3. MOS Transistors

Semiconductor Physics Problems 2015

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Transcription:

Metal-Oxide-Semiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n- substrate - SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate MOSET device the source and substrate are jointed

Types of MOSET n-channel p-channel - - --------------------------------------------------------- Depleted n-channel Enhanced n-channel i DSAT i DSAT T < GS T > GS In Depleted MOSETs the drain current exists at GS

amily of MOSET Output characteristics n-channel i D f( SD ) GS const - SD - i D (ma).5 3 2.5 GS Linear region 5 5 DS () Saturation region

MOSET Transfer Characteristic n-channel i Dsat f( GS ) GS varies - i Dsat k ( GS - T ) 2 i Dsat (ma) 3 2 T g m i Dsat / GS -2 - GS () Transconductance g m is a function of GS

MOSET Transfer Characteristic i Dsat T -2 - GS () There is subthreshold drain current which decays exponentially below threshold voltage T

Ideal Operational Amplifier Any Op-Amp contains at least 5 terminals non-inverting input inverting input - CC (5) positive power supply OUT output EE (-5) negative power supply Ideal Op-Amp does the following Amplifies a differential signal ( - - ) and differential voltage gain A D is extremely high OUT A D ( - - ) A D Suppresses a common signal ( - ), i.e. OUT A C ( - ) A C

Properties of Ideal Op-Amp without eedback - OUT The input currents are negligible I, I -, Op-Amp has high input impeadances, - Low output impeadance OUT Transfer characteristic 5 OUT -2-2 Saturation -5 ( - - ), µ Linear egion

OpAmp with Negative eedback Negative feedback applies the output voltage to the input in the polarity to compensate the input voltage Negative feedback makes the OpAmp input voltages and - equal to each other within the linear range - Inverting Amplifier in t out in i in - A inv i in in The output signal is inverted with respect to input: ϕ 8 Limited input impeadance in out

in Non-inverting Amplifier out t in out - in - out A out non inv in The output and the input signals have the same phases: ϕ High input impeadance in

oltage Gain of Op-Amp with feedback Inverting configuration Non-inverting configuration KCL: i OUT i i B i OUT i i B OUT OUT i OUT B i OUT B i i B i i B OUT i - i OUT i - i OUT OUT B OUT A OUT A OUT

OpAmp Applications Analog integrator C i _ i C irtual GND KCL: i i C In the time domain: C t In the frequency domain: O ( t) C t ( t) dt jωc T O ( ω) j jωc ωτ

Active low-pass filter i _ C i Z jωc irtual GND KCL: i i Transfer function: Z O T ( ω) O Z jω C Magnitude response: Cut-off frequency: T ( ω) ω ω 2 f [ Hz] ω 2π 2πτ 2π C

Analog differentiator i C _ i irtual GND KCL: i i In the time domain: C t O ( t) In the frequency domain: O C t jω C O T ( ω) jωc jωτ

Active high-pass filter Z jωc C i _ i irtual GND KCL: i i Transfer function: T ( ω) O Z jω C Magnitude response: Cut-on frequency: f [ Hz] ω 2π 2πτ 2π C Z T ( ω) ω ω 2

Inverting summer KCL: i i 2 i 2 2 2 i i 2 2 irtual GND _ I 2 2 If 2 then - ( 2 )

Logarithmic amplifier KCL: i i D I exp O T D i D 2 _ i D irtual GND T ln I, < T ln I, > T T ln const ( ln ( I ) )

Exponential amplifier KCL: i D i I exp T O D i D D 2 _ i irtual GND I exp T exp( T ) I const exp ( )