Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Similar documents
Manipulating Single Atoms

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

arxiv:quant-ph/ v1 16 Mar 2007

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Single atoms in a standing-wave dipole trap

(Noise) correlations in optical lattices

Quantum Computation with Neutral Atoms

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Atom Quantum Sensors on ground and in space

Observation of the nonlinear phase shift due to single post-selected photons

Addressing of individual atoms in an optical dipole trap

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Raman spectroscopy of single atoms

Hong-Ou-Mandel effect with matter waves

Quantum Computation with Neutral Atoms Lectures 14-15

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Efficient routing of single photons by one atom and a microtoroidal cavity

Laser cooling and trapping

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Cold Magnesium Atoms for an Optical Clock

Correlation functions in optics; classical and quantum 2. TUW, Vienna, Austria, April 2018 Luis A. Orozco

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

An atom-sorting machine

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008

Coulomb crystal extraction from an ion trap for application to nano-beam source"

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

Atomic Physics (Phys 551) Final Exam Solutions

Development of a compact Yb optical lattice clock

Quantum computation and quantum information

Conditional Measurements in cavity QED. Luis A. Orozco Joint Quantum Institute Department of Physics

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

9 Atomic Coherence in Three-Level Atoms

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Roger Ding. Dr. Daniel S. Elliott John Lorenz July 29, 2010

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Lecture 11, May 11, 2017

Experimental Demonstration of Spinor Slow Light

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Quantum Logic Spectroscopy and Precision Measurements

Optomechanics and spin dynamics of cold atoms in a cavity

Ultracold atoms and molecules

Quantum communications

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Single-photon NV sources. Pauli Kehayias March 16, 2011

Solutions for Exercise session I

Quantum and Nano Optics Laboratory. Jacob Begis Lab partners: Josh Rose, Edward Pei

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

Cavity QED with quantum dots in microcavities

QUANTUM INTERFERENCE BETWEEN SINGLE PHOTONS FROM A SINGLE ATOM AND A COLD ATOMIC ENSEMBLE SANDOKO KOSEN NATIONAL UNIVERSITY OF SINGAPORE

Quantum Computing with neutral atoms and artificial ions

Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom

Quantum Optics in Wavelength Scale Structures

.O. Demokritov niversität Münster, Germany

ATOMIC AND LASER SPECTROSCOPY

Atomic Motion in a Laser Standing Wave

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Motion and motional qubit

Elements of Quantum Optics

Large Momentum Beamsplitter using Bloch Oscillations

Laser Cooling and Trapping of Atoms

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Microfibres for Quantum Optics. Dr Síle Nic Chormaic Quantum Optics Group

Tunneling in optical lattice clocks

Quantum optics and squeezed states of light

PHYS598 AQG Introduction to the course

Ion trap quantum processor

arxiv:quant-ph/ v1 4 Nov 2002

arxiv: v1 [physics.ins-det] 25 May 2017

Quantum Optics and Quantum Information Laboratory

Confining ultracold atoms on a ring in reduced dimensions

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Progress on Atom Interferometer (AI) in BUAA

Chapter 4 Atom preparation: optical pumping and conditional loading

arxiv: v1 [cond-mat.quant-gas] 8 Feb 2010

Cavity decay rate in presence of a Slow-Light medium

Laser Cooling of Thulium Atoms

Why ultracold molecules?

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon

Quantum Optics. Manipulation of «simple» quantum systems

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Atoms as quantum probes of near field thermal emission

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

High Accuracy Strontium Ion Optical Clock

Top Le# side TEST Right side bo.om

Ultracold molecules - a new frontier for quantum & chemical physics

Synthesizing arbitrary photon states in a superconducting resonator

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Analysis of a single-atom dipole trap

Quantum computation with trapped ions

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

Transcription:

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms Collège de France Paris, Fevriér 26, 2002 Universität Bonn D. Meschede, Institut für Angewandte Physik

Single Atoms Crew Dr.Victor Gomer Stephan Kuhr Wolfgang Alt Dominik Schrader Martin Müller Yephen Miroshnyshenko Daniel Frese (`00) Bernd Ueberholz (`01)

Overview 1. Experimenting with Single Neutral Atoms in a MOT 2. Deterministic Source of Single Neutral atoms 3. Single Atom Dynamics 4. Towards entanglement

Atome können wir nirgends wahrnehmen, sie sind wie alle Substanzen Gedankendinge. ( Atoms themselves cannot be perceived anywhere, like all substances they are abstractions. 1912) Ernst Mach (1838-1916) 1867 Professor for Experimental Physics Prague 1895 Professor for Philosophy Vienna

2002: Physics/Quantum Optics is moving towards Quantum Engineering!

Overview 1. Experimenting with Single Neutral Atoms in a MOT 2. Deterministic Source of Single Neutral atoms 3. Single Atom Dynamics 4. Towards entanglement

1. Experimenting with Single Neutral Atoms Magneto-optical Trap (MOT) Strong magnetic field helps to better localise atoms

1. Experimenting with Single Neutral Atoms Magneto-optical Trap (MOT) Cesium atom sixpack 10 µm

1. Experimenting with Single Neutral Atoms Magneto-optical Trap (MOT) Clock 1 Detectors: APD (EG&G), 200ns dead time, Q.E. > 50% Clocks: 50 ns resolution, ~ 1 MHz dyn. range

Dynamics of trapped atoms 10 3 counts/100ms 18 16 14 12 10 8 6 4 2 0 0 1 2 3 4 5 6 7 8 9 10 5 Atoms Minutes

1. Experimenting with Single Neutral Atoms Clock 1 Clock 2 Hanbury-Brown & Twiss setup Improves time resolution!

1. Experimenting with Single Neutral Atoms Photon correlations reveal atomic dynamics at all relevant time scales! 1. Presto Internal Dynamics @ nano seconds 2. Allegro Magnetic Bistability @ micro seconds 3. Andante Global trap motion @ milli seconds 4. Adagio Cold collisions @ seconds/minutes For a review see: V. Gomer and D. Meschede, Ann.Phys.(Leipzig)10, 9 18 (2001) and refs. therein

1. Experimenting with Single Neutral Atoms Photon Antibunching a Classic of Quantum Optics Prepares atom in ground state Coincidences/min 3 2 1 0-80 1. Photon -40 1 atom 0 40 80 Time [ns] Shows Rabi oscillation 2. Photon

1. Experimenting with Single Neutral Atoms 1,0 ρ 22 N = 1 10 5 3 atoms 0,5 co i n ci d e n ce s/mi n 0 8 4 0 3 2 atoms 0,0 0 20 40 60 1,0 22 0,5 0,0 0 20 40 60 N = 10 2 1 0-80 -40 1 atom 0 40 80 Time [ns]

1. Experimenting with Single Neutral Atoms Polarisation analysis Clock 1 Clock 2 PBS l Use linearly polarized light only! r

1. Experimenting with Single Neutral Atoms Coincidences/ 100 m s 1600 1500 1400 1300 l l 0 20 40 60 80 100 t [µs] 1,0 0,8 0,6 0,4 0,2 0,0 r l 0 20 40 60 80 100 t [µs] Strong circular correlations! No linear correlations! g ( 2) ( τ ) vh 1,2 1,0 0,8 0,6 0,4 0,2 0,0 h v 0 20 40 60 80 100 t [µs]

1. Experimenting with Single Neutral Atoms r Magnetic Bistability (Optical pumping in real time, µs time scale)

1. Experimenting with Single Neutral Atoms h

1. Experimenting with Single Neutral Atoms r m = 1 m = 0 h

Overview 1. Experimenting with Single Neutral Atoms in a MOT 2. Deterministic Source of Single Neutral atoms 3. Single Atom Dynamics 4. Towards entanglement

2. Deterministic Source of Cold Atoms Controlling atomic dynamics: Impossible in the MOT Use off resonant dipole trap! Setup MOT Nd:YAG laser

2. Deterministic Source of Cold Atoms Optical dipole potential = AC Stark effect excited state ground state

2. Deterministic Source of Cold Atoms Optical dipole potential = AC Stark effect 500 nm U 0 = 1.3 mk Ω z z

2. Deterministic Source of Cold Atoms Photon Counts [100 khz] Laser Sequence MOT Dipole Trap N=4 N=3 N=2 N=0 0 10 20 30 40 50 Time [s]

2. Deterministic Source of Cold Atoms Controlling the EXACT NUMBER of atoms!! Setup MOT Nd:YAG laser

2. Deterministic Source of Cold Atoms F=4 F=3 Cesium Hyperfine structure Controlling the internal QUANTUM STATE of single atoms!! Setup MOT Nd:YAG laser

2. Deterministic Source of Cold Atoms Towards controlling the EXACT POSITION of single atoms!!

2. Deterministic Source of Cold Atoms Loading Station for Single Atom Conveyor Belt AOM MOT laser beams Imaging optics Photon counter AOM Nd:YAG-laser

2. Deterministic Source of Cold Atoms

2. Deterministic Source of Cold Atoms Detection of relocated atoms a di spl ace d det e ctio n optics M O T r e gion pro be las er fix ed det ectio n optic s b f luore sce nc e [ co unt s / 2 0 m s] 3 0 2 0 1 0 0 0 5 0 1 0 0 1 5 0 2 0 0 pr obe las er tim e [ m s]

2. Deterministic Source of Cold Atoms Transport Efficiency of Single Atoms (1) 1.0 0.8 Efficiency 0.6 0.4 Rayleigh-Zone Fluorescence-Detection 0.2 0.0-4 -2 0 2 4 6 8 10 Separation (mm)

2. Deterministic Source of Cold Atoms f lu o r e sce n ce [ co u n t s/ 1 0 0 m s] mutual detuning 700 600 500 400 300 200 100 0 + ω 0 - ω Laser sequence MOT MOT dipole trap 0 100 200 300 400 500 600 700 forward backward time [ms] 1 ms motion of the standing wave one atom

2. Deterministic Source of Cold Atoms Transport Efficiency of Single Atoms (2) 1.0 0.8 e ffi ci e n cy 0.6 0.4 Fluorescent Detection MOT-Recapture 0.2 0.0-4 -2 0 2 4 6 8 10 distance [mm]

2. Deterministic Source of Cold Atoms U tot 0.08 U eff U [mk] 0.06 0.04 0 ρ U (z) 0.02 U (z) eff 0 10 12 14 16 18 20 z [mm]

2. Deterministic Source of Cold Atoms Moving standing wave atom Delivery of atoms ON DEMAND!! 1, 2, 3,... Atoms 0, 1, 2,... Photons Refs: D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, Phys. Rev. Lett., 85 3777 (2000) S. Kuhr, W. Alt, D. Schrader, M. Müller,V. Gomer,D. Meschede, Science 293, p. 278-280, (2001) D. Schrader, S. Kuhr, W. Alt, M. Mueller, V. Gomer, D. Meschede, Appl Phys B 73 (2001) 8, 819-824

Overview 1. Experimenting with Single Neutral Atoms in a MOT 2. Deterministic Source of Single Neutral atoms 3. Single Atom Dynamics 4. Towards entanglement

3. Single Atom Dynamics Spectroscopy of a single neutral atom

3. Single Atom Dynamics Photon Bursts of Individual Trapped Atoms Photons/20ms 1 Atom Photons/20ms No Atom Time [ms] Time [ms]

3. Single Atom Dynamics Spectroscopy of atoms in dipole trap Fluorescence [counts/ms] 100 80 60 40 0,50 W 1,05 W 2,15 W 20 0 0 20 40 60 80 100 Probe laser detuning [MHz]

3. Single Atom Dynamics Fluorescence [a.u.] 0.6 0.4 0.2 0.0 0 20 40 60 80 100 Detuning [MHz] π-polarisiert m F =0 Photons 1000 500 0 0 20 40 60 80 100 Detuning [MHz] Fluorescence [a.u.] 0.6 0.4 0.2 0.0 0 20 40 60 80 100 Detuning [MHz] σ-polarisiert m F =1 Photons 2000 1000 0 0 20 40 60 80 100 Detuning [MHz]

3. Single Atom Dynamics Optical dipole potential = AC Stark effect excited state Bound excited states! ground state

3. Single Atom Dynamics Accelerating a single neutral atom

3. Single Atom Dynamics

3. Single Atom Dynamics δν a spontaneous v max 1.0 0 t / 2 t 0.8 Effizienz 0.6 0.4 0.2 0.0 10 100 1000 10000 100000 1000000 a [m/s 2 ]

3. Single Atom Dynamics Axial oscillation frequency Excitation mechanism dipole trap laser vacuum window dipole trap laser resonant excitation if parametric excitation if

3. Single Atom Dynamics 1.0 Frequency measurement 0.9 0.8 det ect i on ef f i ci ency 0.7 0.6 0.5 0.4 0.3 0.2 resonant excitation parametric excitation Model: Gauss Chi^2 = 1.23 frequency1 330 ±5 khz width1 66 ±10 khz frequency2 660 ±15 khz width2 112 ±24 khz 0.1 0.0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 ω [khz]

3. Single Atom Dynamics

3. Single Atom Dynamics Temperature (E/k B ) of a single neutral atom

3. Single Atom Dynamics V(U,x) U 0 E 0 U 0 x U E 1 E 0 x 1 =U 0 1 x Adiabatic Cooling: S = p dx = const.

3. Single Atom Dynamics 1.0 survival probability 0.8 0.6 0.4 0.2 p(e) ~ E 2 exp(-e/kt) T ~ T Doppler 0.0 0.0 0.1 0.2 0.3 0.4 Initial energy of atom E 0 /U 0

Overview 1. Experimenting with Single Neutral Atoms in a MOT 2. Deterministic Source of Single Neutral atoms 3. Single Atom Dynamics 4. Towards entanglement

4. Towards Entanglement 1 2 ( ) Creation of entangled and fully controlled atoms

4. Towards Entanglement U(x) U 0 T=E/k B 0 x Next technical implementation: Raman cooling to dipole trap ground state

4. Towards Entanglement top view: side view: MOT laser Nd:YAG laser 1 mm Nd:YAG 200 µm laser resonator MOT laser resonator

Conclusion We can or will control neutral atoms: Exact number U Quantum state (internal) U Position (global) U Trapping oscillator state Number of photons in cavity... Atoms are excellent quantum memories... Photons make good transmitters, switches...

Merci beaucoup pour votre attention!