MS Based Proteomics: Recent Case Studies Using Advanced Instrumentation

Similar documents
Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University

Q Exactive TM : A True Qual-Quan HR/AM Mass Spectrometer for Routine Proteomics Applications. Yi Zhang, Ph.D. ThermoFisher Scientific

HOWTO, example workflow and data files. (Version )

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables

TOMAHAQ Method Construction

Increasing the Multiplexing of Protein Quantitation from 6- to 10-Plex with Reporter Ion Isotopologues

MS-based proteomics to investigate proteins and their modifications

6 x 5 Ways to Ensure Your LC-MS/MS is Healthy

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 *

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Computational Methods for Mass Spectrometry Proteomics

Qualitative Proteomics (how to obtain high-confidence high-throughput protein identification!)

Relative quantification using TMT11plex on a modified Q Exactive HF mass spectrometer

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry

Quantitation of TMT-Labeled Peptides Using Higher-Energy Collisional Dissociation on the Velos Pro Ion Trap Mass Spectrometer

Peptide Targeted Quantification By High Resolution Mass Spectrometry A Paradigm Shift? Zhiqi Hao Thermo Fisher Scientific San Jose, CA

Proteome-wide label-free quantification with MaxQuant. Jürgen Cox Max Planck Institute of Biochemistry July 2011

Methods for proteome analysis of obesity (Adipose tissue)

Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics

Aplicació de la proteòmica a la cerca de Biomarcadors proteics Barcelona, 08 de Juny 2010

Designed for Accuracy. Innovation with Integrity. High resolution quantitative proteomics LC-MS

Advanced Fragmentation Techniques for BioPharma Characterization

Relative Quantitation of TMT-Labeled Proteomes Focus on Sensitivity and Precision

Protein analysis using mass spectrometry

Workshop: SILAC and Alternative Labeling Strategies in Quantitative Proteomics

Self-assembling covalent organic frameworks functionalized. magnetic graphene hydrophilic biocomposite as an ultrasensitive

Yifei Bao. Beatrix. Manor Askenazi

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

itraq and RNA-Seq analyses provide new insights of Dendrobium officinale seeds (Orchidaceae)

Modeling Mass Spectrometry-Based Protein Analysis

Mass spectrometry in proteomics

Analysis of Labeled and Non-Labeled Proteomic Data Using Progenesis QI for Proteomics

ENCODE DCC Antibody Validation Document

Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow. LCMS n. Discovery Attribute Sciences

HR/AM Targeted Peptide Quantitation on a Q Exactive MS: A Unique Combination of High Selectivity, Sensitivity and Throughput

Proteomics: the first decade and beyond. (2003) Patterson and Aebersold Nat Genet 33 Suppl: from

Spectrum-to-Spectrum Searching Using a. Proteome-wide Spectral Library

A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes

MS-MS Analysis Programs

High-Field Orbitrap Creating new possibilities

A Description of the CPTAC Common Data Analysis Pipeline (CDAP)

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons.

Thermo Fisher Scientific, San Jose, CA; 2 Kelleher Lab, Northwestern University, Evanston, IL; 3

The Power of LC MALDI: Identification of Proteins by LC MALDI MS/MS Using the Applied Biosystems 4700 Proteomics Analyzer with TOF/TOF Optics

Statistical mass spectrometry-based proteomics

SILAC and TMT. IDeA National Resource for Proteomics Workshop for Graduate Students and Post-docs Renny Lan 5/18/2017

Quan/Qual Analyses. Unmatched Confidence for. Thermo Scientific Q Exactive Orbitrap LC-MS/MS System. Identify Quantify Confirm

SeqAn and OpenMS Integration Workshop. Temesgen Dadi, Julianus Pfeuffer, Alexander Fillbrunn The Center for Integrative Bioinformatics (CIBI)

Quantitative analysis of the proteome

Amine specific Labeling Reagents for Multiplexed Relative and Absolute Protein Quantitation

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile

ENCODE DCC Antibody Validation Document

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller

Quantitative Proteomics

Making Sense of Differences in LCMS Data: Integrated Tools

The Pitfalls of Peaklist Generation Software Performance on Database Searches

Tutorial 1: Setting up your Skyline document

BACTERIAL PHYSIOLOGY SMALL GROUP. Monday, August 25, :00pm. Faculty: Adam Driks, Ph.D. Alan Wolfe, Ph.D.

A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen

Mass spectrometry-based proteomics has become

Targeted protein quantification

Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics* S

Comprehensive support for quantitation

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics

UCD Conway Institute of Biomolecular & Biomedical Research Graduate Education 2009/2010

Identification of Human Hemoglobin Protein Variants Using Electrospray Ionization-Electron Transfer Dissociation Mass Spectrometry

A TMT-labeled Spectral Library for Peptide Sequencing

PC235: 2008 Lecture 5: Quantitation. Arnold Falick

Comparison and Analysis of Heat Shock Proteins in Organisms of the Kingdom Viridiplantae. Emily Germain, Rensselaer Polytechnic Institute

CSE182-L8. Mass Spectrometry

Making the Transition From a Quantitation Lab to a QuantInformation Lab

Isobaric Labeling-Based Relative Quantification in Shotgun Proteomics

Translational Biomarker Core

Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent

Background: Imagine it is time for your lunch break, you take your sandwich outside and you sit down to enjoy your lunch with a beautiful view of

Analyst Software. Peptide and Protein Quantitation Tutorial

Novel quadrupole time-of-flight mass spectrometry for shotgun proteomics

Peptide Labeling with Isobaric Tags Yields Higher Identification Rates Using itraq 4-Plex Compared to TMT 6-Plex and itraq 8-Plex on LTQ Orbitrap

Thermo Scientific LTQ Velos Dual-Pressure Linear Ion Trap

Information Dependent Acquisition (IDA) 1

Protein Sequencing and Identification by Mass Spectrometry

Statistical analysis of isobaric-labeled mass spectrometry data

Structure of the α-helix

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927)

PRG2006 Research Study

Quantitative analysis of the proteome. Proteomics Data Standards

LC-MS Based Metabolomics

Improved Validation of Peptide MS/MS Assignments. Using Spectral Intensity Prediction

Proteomics and Mass Spectrometry

X!TandemPipeline (Myosine Anabolisée) validating, filtering and grouping MSMS identifications

Targeted Proteomics Environment

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

Transcription:

MS Based Proteomics: Recent Case Studies Using Advanced Instrumentation Chris Adams, PH.D. Stanford University Mass Spectrometry http://mass-spec.stanford.edu/

For personal use only. Please do not reuse or reproduce without the author s permission. 2

Instrumentation and Capabilities Proteomics Front End(s)- Eksigent Nano2D LC Mass Spectrometer(s)- LTQ Orbitrap Velos (ETD) LTQ

Instrumental Upgrades: More data of higher quality

Sample Prep & Data Analysis- Sample Prep -In-gel digests -Solution -Enrichments -Labels (itraq, TMT) SP DA Data Analysis -Sequest -Mascot -Scaffold for visualization -Statistics (FDR) -Qualitative ti v. Quantitative

Current Case Studies Global proteome analysis Quantitative Proteomics- One task many alternatives.. PTM mapping

Project: 1 Global l Proteome Professor Virginia i i Walbot, Dr. Dave Skibbe http://www.stanford.edu/~walbot/ Tumorigenic Fungal Peptides Causing Plant Cancer: Defining Expression Timing and Modeling Structural Similarities to Host Proteins Ustilago maydis causes cancer within a few days of infecting maize by stimulating extra cell divisions, endopolyploidization (up to 64N), and enormous cell expansion. Although U. maydis grows on many hosts, only maize forms tumors where the pathogen can complete its lifecycle. Gene deletion demonstrated that secreted fungal proteins many of which are small and encoded by gene families are required for tumors. D. Skibbe, et al. Science 328, 89 (2010)

Project: 1 Global Proteome (cont.) huitlacoche WEET-LA-KO-CHEE

1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 6 / 2 3 / 2 0 1 0 4 : 1 8 : 1 8 P M R T : 0. 0 0 0 0 0-5 9. 9 9 3 2 0 1 0 0 9 5 9 0 8 5 8 0 7 5 7 0 6 5 6 0 5 5 5 0 4 5 4 0 3 5 2 0. 7 8 3 8 7 2 1. 0 0 6 7 1 2 3. 2 5 5 7 1 2 6. 1 3 8 7 1 2 7. 9 3 3 5 3 3 2. 4 9 0 2 1 3 2. 8 8 6 3 7 3 7. 2 8 6 0 3 4 9. 0 5 2 3 7 3 0 1 9. 0 8 7 0 4 2 5 2 0 1 6. 0 6 2 7 1 1 5 3 0. 4 6 4 5 4 1 1. 7 8 3 3 7 1 0 1 3. 8 2 9 5 4 1 1. 4 7 7 7 1 5 5 0. 1 5 4 0 4 4 2. 5 8 5 5 4 4 6. 7 4 5 3 8 5 4. 8 6 4 3 8 3. 3 5 2 0 4 5. 2 1 3 5 3 1 0. 3 1 2 7 1 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 T i m e ( m i n ) 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 6 / 2 3 / 2 0 1 0 4 : 1 8 : 1 8 P M 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A # 2 8 1 5 R T : 2 6. 0 1 A V : 1 N L : 3. 3 0 E 8 T : F T M S + p N S I F u l l m s [ 4 0 0. 0 0-1 8 0 0. 0 0 ] 6 3 4. 3 2 7 3 1 0 0 9 5 9 0 8 5 8 0 7 5 7 0 6 5 6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0 N L : 2. 0 7 E 9 T I C M S 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 1 2 6 7. 6 4 6 5 8 0 7. 9 2 2 2 7 2 8. 3 9 2 8 4 9 6. 2 5 3 3 z = 3 1 0 9 2. 0 8 5 6 6 6 9. 8 4 5 1 8 8 4. 4 5 3 0 6 1 5. 3 0 6 7 9 6 1. 4 9 9 3 9 9 1. 4 9 9 5 1 1 2 7. 1 0 2 3 1 2 2 9. 6 0 5 0 1 2 7 9. 1 3 8 8 z = 3 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0 1 2 5 0 1 3 0 0 1 3 5 0 m / z 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 6 / 2 3 / 2 0 1 0 4 : 1 8 :1 8 P M 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A # 2 8 1 6 R T : 2 6. 0 2 A V : 1 N L : 7. 3 6 E 5 T : F T M S + p N S I d F u l l m s 2 8 0 7. 9 2 @ h c d 4 5. 0 0 [ 1 0 0. 0 0-1 6 3 0. 0 0 ] 1 0 0 9 5 9 0 8 5 8 0 7 5 7 0 6 5 6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0 6 3 6. 3 3 4 9 5 1 7. 3 3 4 4 6 5 4. 3 4 5 2 7 6 7. 4 2 9 3 9 1 3. 5 3 4 1 7 8 5. 4 3 8 8 5 4 6. 2 1 9 1 6 3 2. 3 6 0 0 7 4 5. 4 4 5 8 5 5 7. 2 9 3 6 7 3 9. 4 3 5 3 8 1 6. 4 8 1 9 z =? 1 0 2 6. 6 2 3 7 6 2 6. 3 5 2 3 8 9 5. 5 1 9 3 z =? z =? 6 7 0. 3 7 7 8 1 1 5 5. 6 6 5 2 8 8 0. 5 1 7 4 1 2 8 4. 6 8 2 3 z =? 1 0 0 7. 5 0 9 9 1 0 4 4. 0 4 6 5 z =? z =? 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0 1 2 5 0 1 3 0 0 Lane B1 B1 B2 Global l Proteome (cont.) Infected Uninfect In-gel tryptic digest 1 2 3 4 5 6 peptides Reversed Phase nanolc Relative Abundance B3 Full Scan Orbitrap B4 Relative Abundance B5 MS/MS top 15 Ion Trap B6 Relative Abundance

Global l Proteome (cont.) 100118_dskibbe_walbot_l1_1D RT:4.6354-57.5517 100 537.82 412.99 647.88541.64 430.72554.30 657.34 628.87 811.43 50 B1 483.79 629.33 621.34 602.05 867.13 401.23 408.22 1087.1616 25 100 0 445.12 445.12620.26 480.33 896.50 892.25 412.98 537.82 50 867.13 B2 771.89 647.88 541.64 811.43 555.76 483.79 430.72 485.74 689.89 0 445.12445.12 402.25 401.23 480.33 896.50 892.50 100 513.31 421.76 489.26 626.87 908.48 50 B3 708.90 717.39 511.27 472.90464.80 897.52 499.91 559.66 638.37 997.20 736.43 480.33 480.33 480.33 615.16 482.24524.56 100 0 421.76 421.76 50 B4 692.89 475.79 527.34 414.21 523.29 639.33 559.66 1017.19 1113.19 100 0 415.21 445.12 524.56 578.77 615.40851.80 480.33 451.16 421.76 B5 50 681.83 470.30 492.25 418.23 544.27 587.83 449.09 441.28 594.351167.07 738.04 1176.93 100 0 615.16 445.12403.23 416.73 1314.61 868.61 480.33 415.21 413.01 453.76 50 B6 460.25 453.26 502.30 632.85 594.02 615.40 449.09 415.74 785.05 720.90 927.65 615.40 0 445.12 487.73 467.74 664.36 480.33 719.44 5 10 15 20 25 30 35 40 45 50 55 Time (min) Relative Abundance Instrument time: 6 bands x 6 lanes = 36 hours

1 2 3 4 5 6 1 peptide ID 1412 proteins 0.8 % Protein FDR 5%PeptideFDR Protein Inference Global l Proteome (cont.) 3500 Numbe er of Protein ns 3000 2500 2000 1500 1000 500 0 86.7 96.1 99.5 99.2 98.5 99.9 Protein Confidence Inverval 38 detected fungal proteins Total 1412

Global l Proteome (cont.) unts pectral Cou No ormalized S 200 150 100 50 1 2 3 1 2 3 Infected Mock

Global l Proteome (cont.) No rmalized Sp pectral Cou unts 120 80 20 1 2 3 1 2 3 Infected Mock

Quantitative i Proteomics Ex. 1 Spectral Counting Spectral count correlates well with protein abundance Fold change can be calculated and statistically evaluated Simple and straightforward implementation Sensitive to protein abundance changes for abundant proteins 2 fold change easily detected with high confidence Limitations The response to increasing protein amount is saturable Noisy data at low spectral counts large difference in spectral count necessary to determine significant change

Quantitative Proteomics Ex. 1 Dr. Jonathan Rothbard, Steinman Lab http://steinmanlab.stanford.edu/index.html Define the serological clients of shspb5 in normal and patient's plasma Small heat shock proteins are a family of intracellular chaperones that are cytoprotective due to their ability to bind partially unfolded proteins and prevent aggregation. Recently, HspB5 (alpha B crystallin) has been shown to be therapeutically effective when administered intraperatoneally in animal models of multiple sclerosis, rheumatoid arthritis, stroke, and ischemia reperfusion injury. In all cases, there is significant immune suppression. To test the hypothesis that the mode of action is the chaperone activity of the protein in plasma, the proteomic content of clients has been defined by mass spectrometry. More specifically, proteins associated with HspB5 in normal and patient's plasma. 15

1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 6 / 2 3 / 2 0 1 0 4 : 1 8 : 1 8 P M R T : 0. 0 0 0 0 0-5 9. 9 9 3 2 0 1 0 0 9 5 9 0 8 5 8 0 7 5 7 0 6 5 6 0 5 5 5 0 4 5 4 0 3 5 2 0. 7 8 3 8 7 2 1. 0 0 6 7 1 2 3. 2 5 5 7 1 2 6. 1 3 8 7 1 2 7. 9 3 3 5 3 3 2. 4 9 0 2 1 3 2. 8 8 6 3 7 3 7. 2 8 6 0 3 4 9. 0 5 2 3 7 3 0 1 9. 0 8 7 0 4 2 5 2 0 1 6. 0 6 2 7 1 1 5 3 0. 4 6 4 5 4 1 1. 7 8 3 3 7 1 0 1 3. 8 2 9 5 4 1 1. 4 7 7 7 1 5 5 0. 1 5 4 0 4 4 2. 5 8 5 5 4 4 6. 7 4 5 3 8 5 4. 8 6 4 3 8 3. 3 5 2 0 4 5. 2 1 3 5 3 1 0. 3 1 2 7 1 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 T i m e ( m i n ) 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 6 / 2 3 / 2 0 1 0 4 : 1 8 : 1 8 P M 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A # 2 8 1 5 R T : 2 6. 0 1 A V : 1 N L : 3. 3 0 E 8 T : F T M S + p N S I F u l l m s [ 4 0 0. 0 0-1 8 0 0. 0 0 ] 6 3 4. 3 2 7 3 1 0 0 9 5 9 0 8 5 8 0 7 5 7 0 6 5 6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0 N L : 2. 0 7 E 9 T I C M S 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 1 2 6 7. 6 4 6 5 8 0 7. 9 2 2 2 7 2 8. 3 9 2 8 4 9 6. 2 5 3 3 z = 3 1 0 9 2. 0 8 5 6 6 6 9. 8 4 5 1 8 8 4. 4 5 3 0 6 1 5. 3 0 6 7 9 6 1. 4 9 9 3 9 9 1. 4 9 9 5 1 1 2 7. 1 0 2 3 1 2 2 9. 6 0 5 0 1 2 7 9. 1 3 8 8 z = 3 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0 1 2 5 0 1 3 0 0 1 3 5 0 m / z 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A 6 / 2 3 / 2 0 1 0 4 : 1 8 :1 8 P M 1 0 0 6 2 3 _ R e d w o o d B i o S c i _ R a d u k a _ 2 9 A # 2 8 1 6 R T : 2 6. 0 2 A V : 1 N L : 7. 3 6 E 5 T : F T M S + p N S I d F u l l m s 2 8 0 7. 9 2 @ h c d 4 5. 0 0 [ 1 0 0. 0 0-1 6 3 0. 0 0 ] 9 1 3. 5 3 4 1 1 0 0 9 5 9 0 8 5 8 0 7 5 6 3 6. 3 3 4 9 7 0 6 5 6 0 5 5 5 0 7 6 7. 4 2 9 3 4 5 5 1 7. 3 3 4 4 6 5 4. 3 4 5 2 4 0 3 5 3 0 7 8 5. 4 3 8 8 5 4 6. 2 1 9 1 2 5 6 3 2. 3 6 0 0 2 0 7 4 5. 4 4 5 8 1 5 5 5 7. 2 9 3 6 7 3 9. 4 3 5 3 8 1 6. 4 8 1 9 z =? 1 0 2 6. 6 2 3 7 1 0 6 2 6. 3 5 2 3 8 9 5. 5 1 9 3 z =? z =? 6 7 0. 3 7 7 8 1 1 5 5. 6 6 5 2 8 8 0. 5 1 7 4 1 2 8 4. 6 8 2 3 5 z =? 1 0 0 7. 5 0 9 9 1 0 4 4. 0 4 6 5 z =? z =? 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0 1 2 5 0 1 3 0 0 Quantitative Proteomics Ex. 1 MS/ Normal Serum @ 23 C @ 37 C @ 42 C HspB5 IP HspB5 *G120 Solution tryptic digest peptides Reversed Phase nanolc Relative Abundance Full Scan Orbitrap Relative Abundance MS/MS top 8 Ion Trap Relative Abundance 16

Quantitative Proteomics Ex. 1

Quantitative Proteomics Ex. 1 B5_23C B5_37C 3 10 0 154 18 17 44 B5_42C G120_23C G120_37C 4 2 1 194 13 12 17 G120_42C

Quantitative Proteomics Ex. 1 Proteins Identified (Avg. 6 LC MS runs) Proteins ID Spectra Identified (Avg. 6 LC MS runs) Spectra ID G120 42C G120 42C B5 42C B5 42C Sam mple G120 37C Sam mple G120 37C B5 37C B5 37C G120 23C G120 23C B5 23C B5 23C 0 50 100 150 200 Proteins ID 0 500 1000 1500 2000 Spectra ID

Quantitative Proteomics Ex. 1 IPI00745872 (100%), 69,366.9 Da IPI:IPI00745872.2 Tax_Id=9606 Gene_Symbol=ALB Isoform 1 of Serum albumin 45 unique peptides, 64 unique spectra, 81 total spectra, 438/609 amino acids (72% coverage) M K W V T F I S L L F L F S S A Y S R G V F R R D A H K S E V A H R F K D L G E E N F K A L V L I A F A Q Y L Q Q C P F E D H V K L V N E V T E F A K T C V A D E S A E N C D K S L H T L F G D K L C T V A T L R E T Y G E M A D C C A K Q E P E R N E C F L Q H K D D N P N L P R L V R P E V D V M C T A F H D N E E T F L K K Y L Y E I A R R H P Y F Y A P E L L F F A K R Y K A A F T E C C Q A A D K A A C L L P K L D E L R D E G K A S S A K Q R L K C A S L Q K F G E R A F K A W A V A R L S Q R F P K A E F A E V S K L V T D L T K V H T E C C H G D L L E C A D D R A D L A K Y I C E N Q D S I S S K L K E C C E K P L L E K S H C I A E V E N D E M P A D L P S L A A D F V E S K D V C K N Y A E A K D V F L G M F L Y E Y A R R H P D Y S V V L L L R L A K T Y E T T L E K C C A A A D P H E C Y A K V F D E F K P L V E E P Q N L I K Q N C E L F E Q L G E Y K F Q N A L L V R Y T K K V P Q V S T P T L V E V S R N L G K V G S K C C K H P E A K R M P C A E D Y L S V V L N Q L C V L H E K T P V S D R V T K C C T E S L V N R R P C F S A L E V D E T Y V P K E F N A E T F T F H A D I C T L S E K E R Q I K K Q T A L V E L V K H K P K A T K E Q L K A V M D D F A A F V E K C C K A D D K E T C F A E E G K K L V A A S Q A A L G L Non specific binding: Albumin

Quantitative Proteomics Ex. 1 IPI00019591 (100%), 140,943.5 Da IPI:IPI00019591.2 Tax_Id=9606 Gene_Symbol=CFB cdna FLJ55673, highly similar to Complement factor B 27 unique peptides, 32 unique spectra, 33 total spectra, 333/1266 amino acids (26% coverage) M G P L M V L F C L L F L Y P G L A D S A P S C P Q N V N I S G G T F T L S H G W A P G S L L T Y S C P Q G L Y P S P A S R L C K S S G Q W Q T P G A T R S L S K A V C K P G H C P N P G I S L G A V R T G F R F G H G D K V R Y R C S S N L V L T G S S E R E C Q G N G V W S G T E P I C R Q P Y S Y D F P E D V A P A L G T S F S H M L G A T N P T Q K T K D H E N G T G T N T Y A A L N S V Y L M M N N Q M R L L G M E T M A W Q E I R H A I I L L T D G K S N M G G S P K T A V D H I R E I L N I N Q K R N D Y L D I Y A I G V G K L D V D W R E L N E L G S K K D G E R H A F I L Q D T K A L H Q V F E H M L D V S K L T D T I C G V G N M S A N A S D Q E R T P W H V T I K P K S Q E T C R G A L I S D Q W V L T A A H C F R D G N D H S L W R V N V G D P K S Q W G K E F L I E K A V I S P G F D V F A K K N Q G I L E F Y G D D I A L L K L A Q K V K M S T H A R P I C L P C T M E A N L A L R R P Q G S T C R D H E N E L L N K Q S V P A H F V A L N G S K L N I N L K M G V E W T S C A E V V S Q E K T M F P N L T D V R E V V T D Q F L C S G T Q E D E S P C K G V T T T P W S L A R P Q G S C S L E G V E I K G G S F R L L Q E G Q A L E Y V C P S G F Y P Y P V Q T R T C R S T G S W S T L K T Q D Q K T V R K A E C R A I H C P R P H D F E N G E Y W P R S P Y Y N V S D E I S F H C Y D G Y T L R G S A N R T C Q V N G R W S G Q T A I C D N G A G Y C S N P G I P I G T R K V G S Q Y R L E D S V T Y H C S R G L T L R G S Q R R T C Q E G G S W S G T E P S C Q D S F M Y D T P Q E V A E A F L S S L T E T I E G V D A E D G H G P G E Q Q K R K I V L D P S G S M N I Y L V L D G S D S I G A S N F T G A K K C L V N L I E K V A S Y G V K P R Y G L V T Y A T Y P K I W V K V S E A D S S N A D W V T K Q L N E I N Y E D H K L K S G T N T K K A L Q A V Y S M M S W P D D V P P E G W N R T R H V I I L M T D G L H N M G G D P I T V I D E I R D L L Y I G K D R K N P R E D Y L D V Y V F G V G P L V N Q V N I N A L A S K K D N E Q H V F K V K D M E N L E D V F Y Q M I D E S Q S L S L C G M V W E H R K G T D Y H K Q P W Q A K I S V I R P S K G H E S C M G A V V S E Y F V L T A A H C F T V D D K E H S I K V S V G G E K R D L E I E V V L F H P N Y N I N G K K E A G I P E F Y D Y D V A L I K L K N K L K Y G Q T I R P I C L P C T E G T T R A L R L P P T T T C Q Q Q K E E L L P A Q D I K A L F V S E E E K K L T R K E V Y I K N G D K K G S C E R D A Q Y A P G Y D K V K D I S E V V T P R F L C T G G V S P Y A D P N T C R G D S G G P L I V H K R S R F I Q V G V I S W G V V D V C K N Q K R Q K Q V P A H A R D F H I N L F Q V L P W L K E K L Q D E D L G F L Specific binding: Complement factor B

Quantitative Proteomics Continued

Quantitative Proteomics Ex. 2 Isobaric labels

Quantitative i Proteomics Ex. 2 Dr. Wen-Jun Shen, Kraemer Lab http://med.stanford.edu/profiles/fredric_kraemer/ Understanding protein expression in relation to cellular response to fatty acid/hdl treatments Plex

Quantitative i Proteomics Ex. 2 TMT_4Plex_rep_1 TMT_4Plex_rep_2 2 peptides, >95% C.I. 65 323 55 TMT_4Plex_rep_1 TMT_4Plex_rep_2 Proteins 440 1564 374 Peptides

Quantitative Proteomics Ex. 2 Run in duplicate, 2 hour LC MSMS gradients HCD for reporter ion detection 443 proteins identified, >99% Protein, >95% (2)Peptide >70% of protein ID d quantification values reported TMT-126 100% 1,849.06 AMU, +2 H (Parent Error: 79 ppm) 80% tive Intensity Relat 60% 40% TMT-127 20% Minimum Value (5.0%) 0% 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0 m/z

Quantitative i Proteomics Ex. 2

Quantitative i Proteomics Ex. 2

Quantitative i Proteomics Ex. 2

Acknowledgements SUMS Allis Chien Karolina Krasinska Pavel Aronov Maurizio Splendore LudmilaL d Alexandrova Elias Lab Snyder Lab Vincent and Stella Coates Foundation