Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Similar documents
Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Fusion and other applications of density-constrained TDDFT

Microscopic Fusion Dynamics Based on TDHF

TDHF Basic Facts. Advantages. Shortcomings

Microscopic DC-TDHF study of heavy-ion potentials and fusion cross sections

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT

Towards a microscopic theory for low-energy heavy-ion reactions

Mean-Field Dynamics of Nuclear Collisions

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Observables predicted by HF theory

Equilibration dynamics in heavy-ion reactions. Yoritaka Iwata (GSI, Darmstadt)

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Low-energy heavy-ion physics: glimpses of the future

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

Sub-barrier fusion enhancement due to neutron transfer

Analysis of nuclear structure effects in sub-barrier fusion dynamics using energy dependent Woods-Saxon potential

Static versus energy-dependent nucleus-nucleus potential for description of sub-barrier fusion

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2)

时间相关密度泛函理论的发展 及其在重离子碰撞中的应用

Fusion Reactions with Carbon Isotopes

Heavy-Ion Fusion Reactions around the Coulomb Barrier

Role of projectile breakup effects and intrinsic degrees of freedom on fusion dynamics

Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies

Repulsive aspects of pairing correlation in nuclear fusion reaction

Correlation between alpha-decay energies of superheavy nuclei

Entrance Channel Mass Asymmetry Effects in Sub-Barrier Fusion Dynamics by Using Energy

arxiv: v1 [nucl-th] 21 Apr 2007

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION

Direct reactions at low energies: Part II Interactions and couplings

Presence of Barrier Distributions in Heavy Ion Fusion

Effect of Barrier Height on Nuclear Fusion

FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272 Ds

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

arxiv:nucl-th/ v1 4 Nov 2003

Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model

in covariant density functional theory.

Capture barrier distributions and superheavy elements

Mechanism of fusion reactions for superheavy elements Kouichi Hagino

Fusion of light halo nuclei

SUB-BARRIER FUSION of HEAVY IONS

Role of the Nucleus-Nucleus Potential in Sub-barrier Fusion

arxiv:nucl-th/ v1 23 Mar 2004

Dynamics of Quasifission in TDHF Theory

Alpha Decay of Superheavy Nuclei

A program for coupled-channels calculations with all order couplings for heavy-ion fusion reactions arxiv:nucl-th/ v1 30 Mar 1999

Di-neutron correlation in Borromean nuclei

Time-dependent mean-field investigations of the quasifission process

SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015

Reduction methods for fusion and total reaction cross sections

Subbarrier cold fusion reactions leading to superheavy elements( )

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Stability of heavy elements against alpha and cluster radioactivity

COLD FUSION SYNTHESIS OF A Z=116 SUPERHEAVY ELEMENT

Accreting neutron stars provide a unique environment for nuclear reactions

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs

Subbarrier fusion reactions with dissipative couplings

Theoretical Nuclear Physics

Charged Particle Emissions in High-Frequency Alternative Elect

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

ADIABATIC 236 U FISSION BARRIER IN THE FRAME OF THE TWO-CENTER WOODS-SAXON MODEL

A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions

Lecture 4: Nuclear Energy Generation

Fission and Fusion at the End of the Periodic System

Asymmetry dependence of Gogny-based optical potential

One-Proton Radioactivity from Spherical Nuclei

Low-lying dipole response in stable and unstable nuclei

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Fusion08 : Summary talk. L.Corradi

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS

Analysis of Fission with Selective Channel Scission Model

Radiative-capture reactions

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3.

Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015

FISSION TIMES AND PAIRING PROPERTIES

arxiv: v1 [nucl-th] 5 Apr 2019

Resonant Reactions direct reactions:

arxiv:nucl-th/ v1 15 Feb 2007

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Fusion of 9 Li with 208 Pb

Contents I Introduction 3 II One-Dimensional Model for Fusion 4 A Experimental Observables B One-Dimensional Barrier Pene

Sub-barrier fusion of neutron-rich nuclei: 132 Sn+ 64 Ni

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

Nuclear Science Seminar (NSS)

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Entrance-channel potentials in the synthesis of the heaviest nuclei

Physics of neutron-rich nuclei

Pygmy dipole resonances in stable and unstable nuclei

Received 16 June 2015; accepted 30 July 2015

RPA and QRPA calculations with Gaussian expansion method

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Annax-I. Investigation of multi-nucleon transfer reactions in

Transcription:

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons 200 160 Phenomenological heavy-ion potential 60 Ni + 89 Y point Coulomb potential V (MeV) 120 80 40 total heavy-ion potential 0 nuclear Woods-Saxon potential -40-80 6 8 10 12 14 16 r (fm) 1/9/13 Volker Oberacker, Vanderbilt 1

Introduc7on: WKB barrier transmission probability 140 Heavy-ion potential 60 Ni+ 89 Y Coulomb + nuclear Woods-Saxon + centrifugal L=40 130 L=20 L=0 E cm =124 MeV WKB barrier transmission probability (see e.g. Shankar, QM, p. 444) T ( E cm ) = exp 2S E cm ( ) [ ] V L (MeV) 120 110 where the WKB barrier penetration integral is given by 100 8 10 12 14 16 r (fm) 1/9/13 Volker Oberacker, Vanderbilt 2

Introduc7on: Hill- Wheeler extension of WKB method barrier transmission probability (Hill-Wheeler extension of WKB) T ( E cm ) = In the limit exp( 2S ) >>1 we recover the standard WKB result. 1 [ ( )] 1+ exp 2S E cm barrier transmission coefficient T L 10-2 10-3 10-4 10-5 10-6 10-7 Sub-barrier fusion, 60 Ni+ 89 Y, E cm =124 MeV Woods-Saxon potential, WKB / Hill Wheeler 10-8 0 10 20 30 40 partial wave L 1/9/13 Volker Oberacker, Vanderbilt 3

Introduc7on: par7al and total fusion cross sec7on 10-2 Sub-barrier fusion, 60 Ni+ 89 Y, E cm =124 MeV Woods-Saxon potential, WKB / Hill Wheeler partial fusion cross section 10-3 σ ( E cm ) = π 2 ( ) ( 2 +1)T 2µE E cm cm sigma_l (mb) 10-4 10-5 10-6 total fusion cross section σ tot ( E cm ) = σ ( E cm ) =0 10-7 0 10 20 30 40 partial wave L 1/9/13 Volker Oberacker, Vanderbilt 4

Theoretical description of heavy-ion fusion at sub-barrier energies! Barrier penetration models (phenomenological heavy-ion potentials) Balantekin and Takigawa, Rev. Mod. Phys. 70, 77 (1998)! Coupled channels calculations (phenomenological heavy-ion potentials) S. Misicu and H. Esbensen, PRL 96, 112701 (2006) Ichikawa, Hagino, and Iwamoto, PRC 75, 057603 (2007)! TDHF with density-constraint: microscopic calculation of heavy-ion potentials + barrier tunneling Umar and Oberacker, Phys. Rev. C 74, 021601(R) (2006) Umar and Oberacker, Phys. Rev. C 76, 014614 (2007) Umar, Oberacker, Maruhn, and Reinhard, Phys. Rev. C 81, 064607 (2010) Oberacker, Umar, Maruhn, and Reinhard, Phys. Rev. C 85, 034609 (2012) 1/9/13 Volker Oberacker, Vanderbilt 5

Density-constrained TDHF calculations microscopic calculation of heavy-ion potentials V(R) and coordinate-dependent mass parameters M(R) barrier tunneling: exact numerical solution of Schrödinger eq. for relative coordinate R with Incoming Wave Boundary Condition Ref: Hagino, Rowley, and Kruppa, Comput. Phys. Commun. 123, 143 (1999) calculate fusion cross sections below and above the barrier 1/9/13 Volker Oberacker, Vanderbilt 6

TDHF with Density-Constraint (DC-TDHF) A method to extract internal excitation energy while holding the instantaneous neutron and proton densities constrained. TDHF provides the dynamical densities for calculating V(R) ρ TDHF (r,t) E*(R(t)) quasi-static energy surface E DC (R(t)) ion-ion potential 1/9/13 Volker Oberacker, Vanderbilt 7

Calculation of heavy-ion potential with DC-TDHF method #" " #" " Ca+ 132 Sn E cm =140 MeV #" $%!!&"'() #" $%##&'()*!" #" " #"!" #" " #" #" #" " " #" $%#"&'()* #" $%&'(()*+!" #" " #"!" #" " #" V(R) contains dynamical entrance channel effects (neck formation, particle transfer, surface vibrations, giant resonances) 1/9/13 Volker Oberacker, Vanderbilt 8

Heavy-ion potential: strong E cm -dependence Oberacker, Umar, Maruhn, and Reinhard, Phys. Rev. C 85, 034609 (2012) 132 Sn + Ca 120 DC-TDHF V(R) (MeV) 100 =180 MeV =140 MeV Point Coulomb =125 MeV =117 MeV =114 MeV 80 10 12 14 16 18 R (fm) 1/9/13 Volker Oberacker, Vanderbilt 9

Dynamical Effective Mass from TDHF TDHF DC- TDHF 1/9/13 Volker Oberacker, Vanderbilt 10

Mass parameter: strong E cm -dependence Oberacker, Umar, Maruhn, and Reinhard, Phys. Rev. C 85, 034609 (2012) 15 132 Sn + Ca M(R)/µ 10 5 DC-TDHF = 180 MeV = 140 MeV = 117 MeV = 114 MeV 0 10 12 14 16 18 20 R (fm) 1/9/13 Volker Oberacker, Vanderbilt 11

Transformed heavy-ion potential Oberacker, Umar, Maruhn, and Reinhard, Phys. Rev. C 85, 034609 (2012) 132 Sn + Ca V(R),U(R) (MeV) 120 100 =180 MeV =140 MeV =114 MeV DC-TDHF Point Coulomb 80 10 12 14 16 18 R,R (fm) 1/9/13 Volker Oberacker, Vanderbilt 12

Fusion / capture cross section for two spherical nuclei total fusion cross section Schrödinger equation for transformed radial coordinate # 2 % $ 2µ d 2 dr + 2 ( +1) 2 & +U(R ) E 2µR 2 c.m. ( φ (R) = 0 ' reduced mass transformed potential solve Schrödinger equation numerically, with Incoming Wave Boundary Condition (IWBC) 1/9/13 Volker Oberacker, Vanderbilt 13

Total fusion cross section: TDHF and DC-TDHF Oberacker, Umar, Maruhn, and Reinhard, Phys. Rev. C 85, 034609 (2012) 10 3 10 2 132 Sn+ Ca (mb) 10 1 10 0 10-1 unrestricted TDHF DC-TDHF - specific potential potential at =114 MeV potential at =140 MeV potential at =180 MeV 110 120 130 140 (MeV) 1/9/13 Volker Oberacker, Vanderbilt 14

Fusion cross sections: theory vs. experiment Scaling parameters: R 0 = A 1 1/ 3 + A 2 1/ 3 B 0 = Z 1 Z 2 /R 0 10 1 10 0 132 Sn+ Ca (mb) / R 0 2 10-1 exp. (HRIBF) DC-TDHF and TDHF Oberacker, Umar, Maruhn, and Reinhard, Phys. Rev. C 85, 034609 (2012) 124 Sn+ 40 Ca 10-2 exp. (HRIBF) TDHF +BCS/LN 1/9/13 0.85 0.9 0.95 1 1.05 1.1 1.15 / B 0 Volker Oberacker, Vanderbilt 15

64 Ni + 132 Sn: heavy-ion interaction potential for deformed + spherical nuclei ( 2007 ) Umar and Oberacker, Phys. Rev. C 76, 014614 160 150 β = 0 o 64 Ni + 132 Sn Δβ = 10 o V(R,β) (MeV) 140 130 120 β = 90 o Heavy-ion potential depends on initial orientation angle β of deformed nucleus 110 8 10 12 14 16 18 R (fm) 1/9/13 Volker Oberacker, Vanderbilt 16

64 Ni + 132 Sn Fusion Cross-Section DC-TDHF theory Umar and Oberacker, ( 2007 ) PRC 76, 014614 Exp. Data (HRIBF, ORNL) J.F. Liang et al., PRL 91, 152701 (2003) PRC 75, 054607 (2007) PRC 78, 047601 (2008) 1/9/13 Volker Oberacker, Vanderbilt 17

16 O + 208 Pb fusion ( 2009 ) Umar and Oberacker, Eur. Phys. J. A 39, 243 V(R),U(R) (MeV) 75 70 65 60 55 50 = 76 MeV = 78 MeV = 90 MeV 16 O + 208 Pb Point Coulomb 6 8 10 12 14 16 18 20 R,R (fm) σ f (mb) 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 10-5 16 O + 208 Pb = 76 MeV = 78 MeV = 90 MeV 10-6 65 70 75 80 85 90 95 100 105 110 (MeV) 1/9/13 Volker Oberacker, Vanderbilt 18

64 Ni + 64 Ni fusion ( 2008 ) Umar and Oberacker, Phys. Rev. C 77, 064605 V(R) (MeV) 100 95 90 85 80 75 70 65 (β 1 = 0 o, β 2 = 90 o ) (β 1 = 90 o, β 2 = 90 o ) (β 1 = β 2 = 0 o ) 64 Ni+ 64 Ni 60 8 10 12 14 16 R(fm) σ (mb) 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 10-5 64 Ni + 64 Ni data DC-TDHF (Core) 85 90 95 100 105 110 (MeV) 1/9/13 Volker Oberacker, Vanderbilt 19

Heavy-ion fusion leading to superheavy element Z=112 spherical + spherical: cold fusion (E* small) spherical + deformed: hot fusion (E* large) 1/9/13 Volker Oberacker, Vanderbilt 20

Ca + 238 U heavy-ion potential Umar, Oberacker, Maruhn & Reinhard, Phys. Rev. C 81, 064607 (2010) V(R) (MeV) 200 180 160 140 120 } Exp. Energies β = 45 o Point Coulomb =250 MeV =220 MeV =200 MeV}DC-TDHF =185 MeV Ca + 238 U 8 10 12 14 16 18 20 22 24 26 R (fm) 1/9/13 Volker Oberacker, Vanderbilt 21

E* (MeV) Ca + 238 U: excitation energy Umar, Oberacker, Maruhn & Reinhard, Phys. Rev. C 81, 064607 (2010) 100 90 80 70 60 50 40 30 20 10 Ca + 238 U =250 =220 MeV}DC-TDHF =200 MeV =185 MeV 0 8 10 12 14 16 18 20 22 24 R (fm) 1/9/13 Volker Oberacker, Vanderbilt 22

Ca + 238 U capture cross section Umar, Oberacker, Maruhn & Reinhard, Phys. Rev. C 81, 064607 (2010) 10 3 σ capture (mb) 10 2 10 1 10 0 Ca + 238 U DC-TDHF Experiment: Oganessian et al., J. Phys. G 34 R165 (2007) 10-1 10-2 180 185 190 195 200 205 (MeV) 1/9/13 Volker Oberacker, Vanderbilt 23

70 Zn + 208 Pb heavy-ion potential ( 2007 ) Umar and Oberacker, Phys. Rev. C 76, 014614 V(R) (MeV) 260 250 240 230 220 210 }Exp. Energies 70 208 Zn + Pb Point Coulomb E = 400 MeV c.m. = 350 MeV = 290 MeV}DC-TDHF = 280 MeV = 265 MeV 200 8 9 10 11 12 13 14 15 16 17 18 R (fm) 1/9/13 Volker Oberacker, Vanderbilt 24

Excitation energies at capture point in hot and cold fusion ( 2007 ) Umar and Oberacker, Phys. Rev. C 76, 014614 E* c (MeV) 100 90 80 70 60 50 40 30 20 10 Ca + 238 U (β = 0 o ) Ca+ 238 U (β = 45 o ) Ca + 238 U (β = 90 o ) 70 Zn + 208 Pb 0 180 200 220 240 260 280 300 320 340 360 (MeV) 1/9/13 Volker Oberacker, Vanderbilt 25