Lecture 2: Homotopy invariance

Similar documents
LECTURE 3: SMOOTH FUNCTIONS

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Lectures 9 & 10: Fredholm operators

1.4 The Jacobian of a map

Lecture 6: Classifying spaces

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES

Topological K-theory, Lecture 3

Topological K-theory, Lecture 2

Topological K-theory

MAT 530: Topology&Geometry, I Fall 2005

Lecture 11: Clifford algebras

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

Lecture 4: Stabilization

Lecture 14: Proof of Bott periodicity (con t)

LECTURE 15: COMPLETENESS AND CONVEXITY

Remarks on Fully Extended 3-Dimensional Topological Field Theories

Lecture on Equivariant Cohomology

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

M392C NOTES: K-THEORY. Contents

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY

Homotopy and geometric perspectives on string topology

LECTURE 26: THE CHERN-WEIL THEORY

Lecture 8: More characteristic classes and the Thom isomorphism

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

SYMPLECTIC GEOMETRY: LECTURE 5

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

LECTURE 10: THE PARALLEL TRANSPORT

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

Reminder on basic differential geometry

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

Introduction to the Baum-Connes conjecture

Math 550 / David Dumas / Fall Problems

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18

Survey on exterior algebra and differential forms

Lecture 17: Invertible Topological Quantum Field Theories

class # MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS

MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY

Bordism and the Pontryagin-Thom Theorem

Math 225B: Differential Geometry, Final

Lecture 15: Quadratic approximation and the second variation formula

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let

1. Classifying Spaces. Classifying Spaces

TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE. Luis Guijarro and Gerard Walschap

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

EXISTENCE THEORY FOR HARMONIC METRICS

LECTURE 22: THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS

Division Algebras and Parallelizable Spheres III

Vortex Equations on Riemannian Surfaces

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

THE FUNDAMENTAL GROUP OF MANIFOLDS OF POSITIVE ISOTROPIC CURVATURE AND SURFACE GROUPS

Holomorphic line bundles

Lecture 8. Connections

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

Cohomology and Vector Bundles

Math 231b Lecture 16. G. Quick

ERRATA FOR INTRODUCTION TO SYMPLECTIC TOPOLOGY

E 0 0 F [E] + [F ] = 3. Chern-Weil Theory How can you tell if idempotents over X are similar?

THE H-PRINCIPLE, LECTURE 14: HAEFLIGER S THEOREM CLASSIFYING FOLIATIONS ON OPEN MANIFOLDS

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

NOTES ON FIBER BUNDLES

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

DIFFERENTIAL GEOMETRY. LECTURE 12-13,

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ).

CHAPTER 8. Smoothing operators

DEVELOPMENT OF MORSE THEORY

DIFFERENTIAL FORMS, SPINORS AND BOUNDED CURVATURE COLLAPSE. John Lott. University of Michigan. November, 2000

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

Introduction (Lecture 1)

A little taste of symplectic geometry

ADVANCE TOPICS IN ANALYSIS - REAL. 8 September September 2011

(1) Let π Ui : U i R k U i be the natural projection. Then π π 1 (U i ) = π i τ i. In other words, we have the following commutative diagram: U i R k

THE HODGE DECOMPOSITION

Notes on Spivak, Differential Geometry, vol 1.

CLASS NOTES MATH 527 (SPRING 2011) WEEK 6

Math 147, Homework 5 Solutions Due: May 15, 2012

Tangent bundles, vector fields

Math 205C - Topology Midterm

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

We have the following immediate corollary. 1

The projectivity of C -algebras and the topology of their spectra

LECTURE 2: SYMPLECTIC VECTOR BUNDLES

Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions

LECTURE 3 Functional spaces on manifolds

Orientation transport

Fisica Matematica. Stefano Ansoldi. Dipartimento di Matematica e Informatica. Università degli Studi di Udine. Corso di Laurea in Matematica

The Hopf Bracket. Claude LeBrun SUNY Stony Brook and Michael Taylor UNC Chapel Hill. August 11, 2013

Solutions to the Hamilton-Jacobi equation as Lagrangian submanifolds

4.7 The Levi-Civita connection and parallel transport

Chern classes à la Grothendieck

ALGEBRAIC HYPERBOLICITY OF THE VERY GENERAL QUINTIC SURFACE IN P 3

Convex Symplectic Manifolds

Reduction of Homogeneous Riemannian structures

Nonabelian Poincare Duality (Lecture 8)

Vector Bundles on Algebraic Varieties

Exercises for Algebraic Topology

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS

Elements of differential geometry

From holonomy reductions of Cartan geometries to geometric compactifications

Transcription:

Lecture 2: Homotopy invariance Wegivetwoproofsofthefollowingbasicfact, whichallowsustodotopologywithvectorbundles. The basic input is local triviality of vector bundles (Definition 1.12). Theorem 2.1. Let E Ñ r0,1s ˆX be a vector bundle. Denote by j t : X Ñ r0,1s ˆX the inclusion j t pxq pt,xq. Then there exists an isomorphism (2.2) j 0E ÝÝÑ j 1E. The idea of both proofs is to construct parametrized trivializations along the axes r0,1s ˆ txu, x P X, of the cylinder r0,1s ˆ X. For the first proof we assume that X is a smooth manifold and that the vector bundle is smooth. Then we write a differential equation (parallel transport via a covariant derivative) which gives infinitesimal trivializations. The solution to the differential equation gives the global isomorphism. For the second proof we only assume continuity, so X is a (paracompact, Hausdorff) space, and use the local triviality of vector bundles in place of an (infinitesimal) differential equation. Then a patching argument constructs the global isomorphism. Partitions of unity are used as a technical tool in both situations. Differential equations are used throughout differential geometry to prove global theorems. In this case we use an ordinary differential equation, for which there is a robust general theory. For partial differential equations the global questions are more delicate. (Think, for example, of the Ricci flow equations which straighten out the metric on a Riemannian 3-manifold to one of constant curvature.) (2.3) Partitions of unity. The definition of paracompact varies in the literature. Sometimes it includes the Hausdorff condition. The usual definition is that that every open cover of X has a locally finite refinement, or one can take the following theorem as a definition. Recall that a partition of unity is a set A of continuous functions ρ α : X Ñ r0,1s, α P A, with locally finite supports such that ř ρ α 1. It is subordinate to an open cover tu i u ipi if there exists a map α i: A Ñ I such that suppρ α Ă U ipαq. Theorem 2.4. Let X be a paracompact Hausdorff space and tu i u ipi an open cover. (i) There exists a partition of unity tρ i u ipi subordinate to tu i u ipi such that at most countably many ρ i are not identically zero. (ii) There exists a partition of unity tσ α u αpa subordinate to tu i u ipi such that each σ α is compactly supported. (iii) If X is a smooth manifold, then we can take the functions ρ i,σ α to be smooth. For a proof, see [War, 1]. K-Theory (M392C, Fall 15), Dan Freed, September 1, 2015 1

2 D. S. Freed Covariant derivatives (2.5) Differentiation of vector-valued functions. Let M be a smooth manifold and E a complex 1 vector space. The differential of smooth E-valued functions is a linear map (2.6) d: Ω 0 MpEq ÝÑ Ω 1 MpEq which satisfies the Leibniz rule (2.7) dpf eq df e`f de, f P Ω 0 MpCq, e P Ω 0 MpEq, where is pointwise scalar multiplication. However, it is not the unique map with those properties. Any other has the form (2.8) d `A, A P Ω 1 MpEndEq. It acts as the first order differential operator (2.9) d `A: Ω 0 MpEq ÝÑ Ω 1 MpEq e ÞÝÑ de `Apeq The last evaluation is the pairing EndEbE Ñ E. The directional derivative in a direction ξ P T p M at some point p P M is (2.10) de p pξq `A p pξqpeq. Observe that the space of differentiations of E-valued functions is the infinite dimensional vector space Ω 1 M pendeq. (2.11) Differentiation of vector bundle-valued functions. Let π: E Ñ M be a smooth vector bundle. The local triviality (Definition 1.12) implies the existence of an open cover tu i u ipi of M and vector bundle isomorphisms ϕ i : U i ˆ E i Ñ π 1 pu i q for some vector spaces E i. Using ϕ i we identify sections of E over U i with E i -valued functions on U i, and so transport the differentiation operator (2.6) to a differentiation operator 2 (2.12) i : Ω 0 U i peq ÝÑ Ω 1 U i peq, that is, a linear map satisfying the Leibniz rule (2.7), where now e P Ω 0 U i peq. Let tρ i u ipi be a partition of unity satisfying Theorem 2.4(i,iii). Let j i : U i ãñ M denote the inclusion. Then (2.13) : Ω 0 MpEq ÝÑ Ω 1 MpEq e ÞÝÑ ÿ i ρ i i pj i eq 1 The discussion applies without change to real vector spaces and, below, real vector bundles. 2 is pronounced nabla.

Topics in Geometry and Physics: K-Theory (Lecture 2) 3 defines a global differentiation on sections of E. The first-order differential operator (2.13) is called a covariant derivative, and the argument given proves their existence on any smooth vector bundle. If, 1 are covariant derivatives on E, then the difference 1 is linear over functions, as follows immediately from the difference of their Leibniz rules, and so is a tensor A P Ω 1 M pendeq. Therefore, the set of covariant derivatives is an affine space over the vector space Ω 1 M pendeq. Remark 2.14. The averaging argument with partitions of unity works to average geometric objects which live in a convex space, or better sections of a bundle whose fibers are convex subsets of affine spaces. For example, it is used to prove the existence of hermitian metrics on complex vector bundles, and also the existence of splittings of short exact sequences of vector bundles (2.28). (2.15) Parallel transport. Let γ: r0,1s Ñ M be a smooth parametrized path. The covariant derivative pulls back to a covariant derivative on the pullback bundle F : γ E Ñ r0,1s. We use the covariant derivative to construct an isomorphism (2.16) ρ: F 0 ÝÑ F 1 from the fiber over 0 to the fiber over 1, called parallel transport. A section s: r0,1s Ñ F of F Ñ r0,1s is parallel if B{Bt s 0. Lemma 2.17. Let P denote the vector space of parallel sections. Then the restriction map P Ñ F 0 which evaluates a parallel section at 0 P r0,1s is an isomorphism. Proof. Assume first that F Ñ r0,1s is trivializable and fix a basis of sections e 1,...,e n, where n rankf. Define functions A i j : r0,1s Ñ C by (2.18) d{dt e j A i je i. (Here and forever we use the summation convention to sum over indices repeated once upstairs and once downstairs.) Then the section f j e j is parallel if and only if (2.19) df i dt `Ai jf j 0, i 1,...,n. Thefundamentaltheoremofordinarydifferentialequationsassertsthatthereisauniquesolutionf j with given initial values f j p0q, which is equivalent to the assertion in the lemma. In general, by the local triviality of vector bundles and the compactness of r0,1s, we can find 0 t 0 ă t 1 ă t 2 ă ă t N 1 ă t N 1 such that F ˇˇrti 1,t i s Ñ rt i 1,t i s is trivializable. Make the argument in the preceding paragraph on each interval and compose the resulting parallel transports to construct (2.16). (2.20) Parametrized parallel transport. We turn now to Theorem 2.1. Proof of Theorem 2.1 smooth case. Let be a covariant derivative on E Ñ r0,1s ˆ M. Use parallel transport along the family of paths r0,1s ˆ txu, x P M, to construct an isomorphism (2.2).

4 D. S. Freed The ordinary differential equation of parallel transport (2.19) is now a family of equations: the coefficient functions A i j vary smoothly with x. Therefore, we need a parametrized version of the fundamental theorem of ODEs: we need to know that the solution varies smoothly with parameters. One reference for a proof is [La, IV.1]. Proof for continuous bundles Now we turn to the case when X is a space, and we follow [Ha, 1.2] closely; we defer to that reference for details. Choices of local trivializations replace choices of local covariant derivatives in this proof. Proof of Theorem 2.1 continuous case. Observe first that if ϕ: U ˆE ÝÝÑ E is a trivialization of a vector bundle E Ñ U, then for any p,q P U the trivialization gives an isomorphism E p Ñ E q of the fibers which varies continuously in p,q. Thus a trivialization of a vector bundle E Ñ ra,bs over an interval in R gives an isomorphism E a Ñ E b. Now if E Ñ r0,1s ˆX is a vector bundle, we can find an open cover of r0,1s ˆX such that the bundle is trivializable on each open set; then by compactness of r0,1s an open cover tu i u ipi of X such that the bundle is trivializable on each r0,1s ˆ U i ; and, choosing trivializations, continuous isomorphism E ˇˇtauˆUi Ñ E ˇˇtbuˆUi for any 0 ď a ď b ď 1. (We use the observation in the previous paragraph.) Choose a partition of unity tρ i u ipi subordinate to tu i u ipi, and order the countable set of functions which are not identically zero: ρ 1,ρ 2,... Define ψ n ρ 1 ` ` ρ n, n 1,2,..., and set ψ 0 0. Let Γ n Ă r0,1s ˆ X be the graph of ψ n. The trivialization on r0,1s ˆ U n gives an isomorphism ψ n : E ˇˇΓn 1 ÝÝÑ E. The composition ˇˇΓn ψ 2 ψ 1 is well-defined by the local finiteness of tρ i u and gives the desired isomorphism (2.2). Remark 2.21. If X is a smooth manifold, then we choose ρ i to be smooth and this proof produces a smooth isomorphism. Consequences We prove some standard corollaries of Theorem 2.1. Corollary 2.22. Let f: r0,1sˆx Ñ Y be a continuous map between topological spaces, f t : X Ñ Y its restriction to ttu ˆX, and let E Ñ Y be a vector bundle. Then f 0 E f 1 E. Proof. Apply Theorem 2.1 to f E Ñ r0,1s ˆX. Corollary 2.23. Let X be a contractible space and E Ñ X a vector bundle. Then E Ñ X is trivializable. Proof. Theidentitymapid X ishomotopictoaconstantmapc: X Ñ X, andthepullbackc E Ñ X is a constant vector bundle with fiber E c. Now apply Corollary 2.22. Corollary 2.24. Let X U 1 Y U 2 be the union of two open sets, E i Ñ U i vector bundles, and α: r0,1s ˆ U 1 Y U 2 Ñ Iso`E 1 ˇˇU1 XU 2,E 2 ˇˇU1 XU 2 a homotopy of clutching data. Then the vector bundles E 0 Ñ X and E 1 Ñ X obtained by clutching with α 0, α 1 are isomorphic.

Topics in Geometry and Physics: K-Theory (Lecture 2) 5 Here Isop, q is the set of isomorphisms between the indicated vector bundles. Proof. Clutch over r0,1s ˆX and apply Theorem 2.1. Let Vect pxq denote the set of isomorphism classes of vector bundles over X. It is acommutative monoid: the sum operation is defined by direct sum (2.25) res ` re 1 s re E 1 s and the zero element is represented by the constant vector bundle with fiber the zero vector space. In fact, Vect pxq is a semiring, with multiplication defined by (2.26) res ˆ re 1 s re be 1 s Corollary 2.27. Let f: X Ñ Y be a continuous map. Then the induced pullback f : Vect py q Ñ Vect pxq depends only on the homotopy class of f. We write Vect R pxq and Vect CpXq to indicate the ground field explicitly. Further applications of partitions of unity (2.28) Short exact sequences of vector bundles. Let (2.29) 0 ÝÑ E 1 i ÝÝÑ E j ÝÝÑ E 2 ÝÑ 0 be a short exact sequence of vector bundles over a space X. 3 A splitting of (2.29) is a linear map E 2 ÝÑ s E such that j s id E 2. A splitting determines an isomorphism (2.30) E 2 E 1 s i ÝÝÝÑ E. Lemma 2.31. The space of splittings is a nonempty affine space over the vector space HompE 2,E 1 q. Let s deconstruct that statement, and in the process prove parts of it. First, if s 0,s 1 are splittings, then the difference φ s 1 s 0 is a linear map E 2 Ñ E such that j φ 0. The exactness of (2.29) implies that φ factors through a map φ: E 2 Ñ E 1 : in other words, φ i φ. This, then, is the affine structure. But we must prove that the space of splittings is nonempty. First, we observe that any short exact sequence of vector spaces splits, and so using local trivializations we deduce that splittings of (2.29) exist locally on X. Now we use a partition of unity argument. Remember that partitions of unity can be used to average sections of a fiber bundle whose fibers are convex subsets of affine spaces. Of course, an affine space is a convex subset of itself. I leave the details to the reader. 3 These can be real, complex, or quaternionic.

6 D. S. Freed (2.32) Inner products on vector bundles. Recall that if E is a complex vector space, then an inner product is a bilinear map (2.33) x, y: E ˆE ÝÑ C which satisfies (2.34) (2.35) x ξ 1,ξ 2 y x ξ 2,ξ 1 y, ξ 1,ξ 2 P E, xξ,ξy P R ą0, ξ P E, ξ 0. Here E denotes the conjugate vector space, which is the same abelian group as E but with scalar multiplication conjugated. The space of inner products on E is a subset of the vector space of bilinear maps (2.33) which are symmetric in the sense of (2.34); it is the convex cone of elements which satisfy the positivity condition (2.35). Lemma 2.36. A complex vector bundle E Ñ X admits a positive definite hermitian inner product. The space of inner products is contractible. The proof is similar to that of Lemma 2.31 and is left to the reader. We emphasize the importance of the convexity of the set of inner products on a single vector space. References [Ha] Allen Hatcher, Vector Bundles and K-Theory, 2009. Version 2.1. [La] Serge Lang, Introduction to differentiable manifolds, second ed., Universitext, Springer-Verlag, New York, 2002. [War] Frank W Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, 1983.