Linear-quadratic-Gaussian control of linear system with Rayleigh flat fading channel

Similar documents
Stability of State Estimation over Sensor Networks with Markovian Fading Channels

Estimation and Control across Analog Erasure Channels

Optimal control and estimation

On Separation Principle for a Class of Networked Control Systems

On Design of Reduced-Order H Filters for Discrete-Time Systems from Incomplete Measurements

Time Varying Optimal Control with Packet Losses.

STOCHASTIC STABILITY OF EXTENDED FILTERING FOR NONLINEAR SYSTEMS WITH MEASUREMENT PACKET LOSSES

Networked Control Systems: Estimation and Control over Lossy Networks

Via Gradenigo 6/b Department of Information Engineering University of Padova Padova, Italy

On the Resource Allocation Problem in Wireless Networked Control Systems

4F3 - Predictive Control

On Network Topology Reconfiguration for. Remote State Estimation

Approximate Estimation of Distributed Networked Control Systems

Time and Event-based Sensor Scheduling for Networks with Limited Communication Resources

REAL-TIME STATE ESTIMATION OF LINEAR PROCESSES OVER A SHARED AWGN CHANNEL WITHOUT FEEDBACK

LQG Control For MIMO Systems Over multiple TCP-like Erasure Channels

Chapter 5 Kalman Filtering over Wireless Fading Channels

3842 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 12, DECEMBER 2016

Distributed Estimation

Energy Efficient Spectrum Sensing for State Estimation over A Wireless Channel

On the Optimality of Threshold Policies in Event Triggered Estimation with Packet Drops

6.4 Kalman Filter Equations

Estimation for Nonlinear Dynamical Systems over Packet-Dropping Networks

Control over finite capacity channels: the role of data loss, delay and signal-to-noise limitations

LQG CONTROL WITH MISSING OBSERVATION AND CONTROL PACKETS. Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Shankar Sastry

CONSTRAINED MODEL PREDICTIVE CONTROL ON CONVEX POLYHEDRON STOCHASTIC LINEAR PARAMETER VARYING SYSTEMS. Received October 2012; revised February 2013

arxiv: v1 [cs.sy] 22 Jan 2015

LOWELL WEEKLY JOURNAL

Data Transmission over Networks for Estimation and Control

IMPULSIVE CONTROL OF DISCRETE-TIME NETWORKED SYSTEMS WITH COMMUNICATION DELAYS. Shumei Mu, Tianguang Chu, and Long Wang

arxiv: v1 [cs.sy] 15 Oct 2017

On the Effect of Quantization on Performance at High Rates

Stability Conditions and Phase Transition for Kalman Filtering over Markovian Channels

Input and Output Finite-Level Quantized Linear Control Systems: Stability Analysis and Quantizer Design

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation

Linear Encoder-Decoder-Controller Design over Channels with Packet Loss and Quantization Noise

False Data Injection Attacks in Control Systems

Optimal Distributed Lainiotis Filter

Structured State Space Realizations for SLS Distributed Controllers

Optimal LQG Control Across a Packet-Dropping Link

Research Article Weighted Measurement Fusion White Noise Deconvolution Filter with Correlated Noise for Multisensor Stochastic Systems

Necessary and sufficient bit rate conditions to stabilize quantized Markov jump linear systems

On Transmitter Design in Power Constrained LQG Control

ADAPTIVE PERIODIC NOISE CANCELATION FOR COOLING FANS WITH VARYING ROTATIONAL SPEED

Kalman filtering with intermittent heavy tailed observations

Comparison of Periodic and Event-Based Sampling for Linear State Estimation

Square-Root Algorithms of Recursive Least-Squares Wiener Estimators in Linear Discrete-Time Stochastic Systems

Feedback Control over Packet Dropping Network Links

A Switched System Approach to Scheduling of Networked Control Systems with Communication Constraints

Consensus Control of Multi-agent Systems with Optimal Performance

A Study of the Duality between Kalman Filters and LQR Problems

Data Rate Theorem for Stabilization over Time-Varying Feedback Channels

State Estimation Utilizing Multiple Description Coding over Lossy Networks

Sensor/Actuator Faults Detection for Networked Control Systems via Predictive Control

Control Systems Lab - SC4070 Control techniques

Performance Analysis of Spread Spectrum CDMA systems

ROBUST QUANTIZED H CONTROL FOR NETWORK CONTROL SYSTEMS WITH MARKOVIAN JUMPS AND TIME DELAYS. Received December 2012; revised April 2013

Event-based State Estimation of Linear Dynamical Systems: Communication Rate Analysis

Discrete-Time H Gaussian Filter

WIRELESS sensors (WSs) become an important alternative

On Kalman filtering for detectable systems with intermittent observations

A Comparison of Fixed Point Designs And Time-varying Observers for Scheduling Repetitive Controllers

Asymptotic Stability and Disturbance Attenuation Properties for a Class of Networked Control Systems

Output-based Event-triggered Control with Performance Guarantees

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1

Prediction, filtering and smoothing using LSCR: State estimation algorithms with guaranteed confidence sets

Communication constraints and latency in Networked Control Systems

Convergence and Mean Square Stability of Suboptimal Estimator for Systems With Measurement Packet Dropping REFERENCES

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 2, FEBRUARY

Output Feedback Control of Linear Systems with Input and Output Quantization

Reference Tracking of Nonlinear Dynamic Systems over AWGN Channel Using Describing Function

4F3 - Predictive Control

Lecture 5: Control Over Lossy Networks

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

OPTIMAL CONTROL WITH DISTURBANCE ESTIMATION

Model Identification and Attitude Control Scheme for a Micromechanical Flying Insect

Multiple Antennas in Wireless Communications

State Estimation for Nonlinear Systems using Restricted Genetic Optimization

Adaptive Modeling and Long-Range Prediction of. Mobile Fading Channels

An LQ R weight selection approach to the discrete generalized H 2 control problem

Data rate theorem for stabilization over fading channels

Decentralized LQG Control of Systems with a Broadcast Architecture

KALMAN FILTERS FOR NON-UNIFORMLY SAMPLED MULTIRATE SYSTEMS

Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof

On H Estimation of Randomly Occurring Faults for A Class of Nonlinear Time-Varying Systems with Fading Channels

FIR Filters for Stationary State Space Signal Models

Encoder Decoder Design for Event-Triggered Feedback Control over Bandlimited Channels

Feedback Stabilization over Signal-to-Noise Ratio Constrained Channels

Lecture 3: Functions of Symmetric Matrices

Networked Sensing, Estimation and Control Systems

Observers for Bilinear State-Space Models by Interaction Matrices

Unbiased minimum variance estimation for systems with unknown exogenous inputs

On Stability of the Kalman Filter for Discrete Time Output Error Systems

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives

NONUNIFORM SAMPLING FOR DETECTION OF ABRUPT CHANGES*

Feedback Stabilization of Uncertain Systems Using a Stochastic Digital Link

Optimal Signal to Noise Ratio in Feedback over Communication Channels with Memory

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

arxiv: v1 [cs.sy] 13 Nov 2012

Transcription:

30 11 2013 11 DOI: 10.7641/CTA.2013.21325 Control Theory & Applications Vol. 30 No. 11 Nov. 2013, ( ;, 310027) :. (LQG),.,,,.,,,.. : LQG ; ; ; : TP273 : A Linear-quadratic-Gaussian control of linear system with Rayleigh flat fading channel TIAN Yin, ZHANG Hui (National Key Laboratory of Industrial Control Technology; Department of Control Science and Engineering, Zhejiang University, Hangzhou Zhejiang 310027, China) Abstract: In networked control systems, communication constrains have been the focus of study for a long time. This paper studies the linear quadratic Gaussian (LQG) control of linear systems under fading constraints, where the outputs of systems are assumed to be amplified and transmitted to the controller over a Rayleigh flat fading channel. Aiming at the tradeoff between controller design and signal amplification, we add an item concerning communication power into the LQG cost function and then derive the controller and amplification factor in a finite horizon, based on the off-line design of amplification factor. With the proposed method, the designed amplification factor turns to a constant for linear timeinvariant systems as time approaches infinity. This result inspires us to extend our method to infinite horizon. Simulation results illustrate the effectiveness and performance of our method. Key words: LQG control; signal amplification; fading; tradeoff 1 (Introduction),,.,,, [1].,,,,..,., [2] [3] [4].,,,.,,, [5]., [6], : 2012 12 30; : 2013 04 28.. Email: zhanghui@iipc.zju.edu.cn. : (61174063).

11 : 1385,, [7 9] ;, [10] ; [11].,. [12]., [13], ; [14] ; [15] ; [16 17] ; [18] (linear quadratic Gaussian, LQG). : [19]; [20 21]. [18].,,,,., LQG,,,., [19],,. : 2, 3, 4 5. 2 (Problem statement) 1,. : x(k + 1) = Ax(k) + Bu(k) + w(k), (1) y(k) = Cx(k) + v(k), (2) : x(k) R n, u(k) R, y(k) R, w(k) N(0, Σ w ), v(k) N(0, σ 2 v), x(0) N(m 0, Σ 0 ). N(m, Σ) m, Σ. y(k).,,, [2] z(k) = + τ= h(k; τ)α(k τ)y(k τ) + n(k), (3) : α(k), n(k), z(k), h(k; τ),.,, H(k; f) [2], H(k; f) = H(k; 0) = h(k)e jφ(k). h(k; τ) = H(k; 0)δ(τ), (3) z(k) = H(k; 0)α(k)y(k) + n(k). (4), H(k; 0) [13], (4) e jφ(k) z(k) = h(k)α(k)y(k) + n(k), (5) : z(k)=re[ z(k)e jφ(k) ], h(k), n(k)=re[ n(k)e jφ(k) ], n(k) N(0, σ 2 n). [2], H(k; 0), h(k), E{h 2 (k)} = σ 2 h. e jφ(k). Z k {z(0),, z(k)} u(k). [19],. 1 Fig. 1 System structure (5) (2), x(k + 1) = Ax(k) + Bu(k) + w(k), (6) z(k) = C (k)x(k) + v (k), (7) : C (k) h(k)α(k)c, v (k) N(0, σ 2 v (k)), σ 2 v (k) h 2 (k)α 2 (k)σ 2 v + σ 2 n.

1386 30 LQG JM c = E{x T (M)Q(M)x(M)+ [x T (k)q(k)x(k) + R(k)u 2 (k)]}. (8) 3 [22] :. 3α(k), α(k),,, α(k), α(k)., [16]. α(k). E{S(k)α 2 (k)y 2 (k)},, u(k) α(k). : u(k) α(k), J M E{x T (M)Q(M)x(M) + [x T (k)q(k)x(k) + R(k)u 2 (k) + S(k)α 2 (k)y 2 (k)]} (9), Q(k) 0, R(k) > 0, S(k) > 0. 1, 2, 3, 4. 1 [13] : 1 1) (A, B), (A, Σw 1/2 ), (A, C), (A, σ v ) ; 2) A ; 3) {h(k)} (i.i.d.) ; 4) x(0), w(k), v(k), n(k), h(k). 1 1) 4) ; 2),,, 2) ; 3)., Clarke H(t; 0) U [23],,, [2]., { H(k; 0)} i.i.d., {h(k)} { H(k; 0)}, i.i.d.. 3 (Design of control signal and amplification factor) u(k) α(k). u(k) α(k),. 3.1 (Finite horizon) (2) (9), J M = E{x T (M)Q(M)x(M)+ [x T (k)q (k)x(k) + R(k)u 2 (k) + S(k)α 2 (k)v 2 (k)]}, (10) Q (k) Q(k) + S(k)α 2 (k)c T C. (1) (10),, J M = E{x T (0)P (0)x(0)+ {S(k)α 2 (k)v 2 (k) + : w T (k)q (k)w(k)+[u(k)+f (k)x(k)] T [B T P (k+1)b+r(k)][u(k)+f (k)x(k)]}}, (11) F (k)= [B T P (k + 1)B+R(k)] 1 B T P (k + 1)A, P (k) = A T {P (k + 1) P (k + 1)B[B T P (k + (12) 1)B + R(k)] 1 B T P (k + 1)}A + Q (k), (13) P (M) = Q(M). (14) LQG, (11) x(k) x(k) = ˆx(k k) + x(k k), ˆx(k k) k, x(k k). x(k k) Z k,, u(k) ˆx(k k) Z k, x(k k) u(k) + F (k)ˆx(k k). (11) J M = E{x T (0)P (0)x(0)+ {S(k)α 2 (k)v 2 (k) + w T (k)q (k)w(k) + x T (k k)f T (k) [B T P (k + 1)B + R(k)]F (k) x(k k) + [u(k) + F (k)ˆx(k k)] T [B T P (k + 1)B + R(k)][u(k) + F (k)ˆx(k k)]}}. (15) (15), u(k),, u (k) = F (k)ˆx(k k). (16) J M (u ) = E{x T (0)P (0)x(0)+ {S(k)α 2 (k)v 2 (k)+

11 : 1387 w T (k)q (k)w(k)+ x T (k k)f T (k) [B T P (k+1)b+r(k)]f (k) x(k k)}}. (17) α (k) = {α(k) : min α(k) J M(u )}. (18) (16),. ˆx(k k)=e{x(k) Z k } α(k),. (12) (14) (16), u (k) α (k),, α (M 1),.,,.,.,,,. ˆx(k k) Kalman : ˆx(k k) = ˆx(k k 1) + K(k)[z(k) C (k)ˆx(k k 1)], (19) Σ(k k) = Σ(k k 1) K(k)C (k)σ(k k 1), (20) ˆx(k k 1) = Aˆx(k 1 k 1)+Bu(k 1), (21) Σ(k k 1) = AΣ(k 1 k 1)A T + Σ w, (22) K(k) = Σ(k k 1)C T (k) [C (k)σ(k k 1)C T (k)+σ 2 v (k)] 1, (23) : Σ(k k) k, ˆx(k k 1) k 1 k, Σ(k k 1). ˆx(0 1)=m 0, Σ(0 1) = Σ 0.. ζ T ζ = tr{ζζ T }, ζ R n, J M (u ) J M (u ) = m T 0 P (0)m 0 + tr{p (0)Σ 0 } + S(k)α 2 (k)σv+ 2 tr{q (k)σ w }+ M 1 tr{ψ(k)e Hk {Σ(k k)}}, (24) Ψ(k) F T (k)[b T P (k+1)b +R(k)]F (k). E Hk {Σ(k k)} H k, H k {h(0),, h(k)},,. [13], J M (u )α s (k). Dey [13] E Hk {Σ(k+1 k)}, E Hk {Σ(k+ 1 k)} E Hk 1 {Σ(k k 1)} : Σ k+1 k E h(k) {Σ w + A Σ k k 1 A T h 2 (k)α 2 (k) h 2 (k)α 2 (k)(c Σ k k 1 C T + σv) 2 + σn 2 A Σ k k 1 C T C Σ k k 1 A T }, (25) Σ k+1 k E Hk {Σ(k + 1 k)}. (25), Dey E Hk {Σ(k + 1 k)} {Ω(k + 1)}: Ω(k + 1) = E h(k) {Σ w + AΩ(k)A T h 2 (k)α 2 (k) h 2 (k)α 2 (k)(cω(k)c T + σv) 2 + σn 2 AΩ(k)C T CΩ(k)A T }. (26) Ω(0) = Σ 0.. h(k), h 2 (k), E{h 2 (k)} = σ 2 h, Ω(k+1) = Σ w + AΩ(k)A T AΩ(k)CT CΩ(k)A T CΩ(k)C T + σv 2 [1 γ k e γ k E 1 (γ k )], (27) : γ k σ 2 n σ 2 h α2 (k)[cω(k)c T + σ 2 v], E 1(x) e t : E 1 (x) = x t dt. {Ω(k + 1)} E Hk {Σ(k k)}. (22), Σ(k k)=a 1 (Σ(k+1 k) Σ w ) (A 1 ) T, E Hk {Σ(k k)} = A 1 (E Hk {Σ(k + 1 k)} Σ w )(A 1 ) T A 1 (Ω(k + 1) Σ w )(A 1 ) T Γ (k). (28) (28), J M (u ) J M(u )= m T 0 P (0)m 0 + tr{p (0)Σ 0 } + S(k)α 2 (k)σv+ 2 tr{q (k)σ w }+ M 1 tr{ψ(k)γ (k)}, (29) α s (k) = {α(k) : min α(k) J M(u )}. (30) α s (k)., Hooke Jeeves [24], :,.,

1388 30,,. MATLAB patternsearch. 2 α s (k), [13] : (1) (2)(5) : A=1.25, B =C =1, Σ w =1, σ 2 v =4, σ 2 n =4, σ 2 h =0.01; : m 0 = 1, Σ 0 =1; J M Q(k)=R(k)=1, S(k)=0.1, M 40, 60 80. α(k), α(k). 2 α s (k) : M,, α s (k), 4.6172. J (ū ) = tr{ Q Σ w } + Sᾱ 2 σ 2 v + tr{ Ψ Σ}. (33) : ᾱ = {ᾱ : min ᾱ J (ū )}, (34) Ψ = F T [B T P B + R] F, F = [B T P B + R] 1 B T P A, (35) P = A T { P P B[B T P B + R] 1 B T P }A + Q, (36) Q = Q + Sᾱ 2 C T C. (37) 1 2 M = 40, 60 80 α s (k) Fig. 2 Value of α s (k) with M = 40, 60 and 80, S(k)., S(k), α s (k). (27) e γ k, α s (k), γ k, e γ k., S(k), Ω(k). 3.2 (Infinite horizon), Q(k) = Q, R(k) = R, S(k) = S. 3.1 α(k) = ᾱ. J = lim M 1 M E{M 1 [x T (k) Qx(k) + Ru 2 (k) + Sᾱ 2 y 2 (k)]}. (31) E Hk {Σ(k k)}, 2. 2 1) ᾱ 0; 2) max(0, log h(0)c ). [13], 1 2, E Hk {Σ(k k)} Σ, Γ (k) Γ. ū (k) = F ˆx(k k). (32) 3.1, ᾱ s : ᾱs = {ᾱ : min J ᾱ (ū )}, (38) J (ū ) = tr{ Q Σ w } + Sᾱ 2 σv 2 + tr{ Ψ Γ }, (39) Γ Γ = A 1 ( Ω Σ w )(A 1 ) T, (40) Ω = Σ w + A ΩA T A ΩC T C ΩA T C ΩC T + σv 2 [1 γe γ E 1 ( γ)], (41) γ = σ 2 n σ 2 hᾱ2 [C ΩC T + σ 2 v]. (42), P, Ω, ᾱs. 3 S ᾱ s, 3.1, A = 1.25, B = C = 1, m 0 = 1, Σ 0 = 1, Σ w = 1, σv 2 = 4, σn 2 = 4, σh 2 = 0.01, J Q = R = 1, ᾱs., S = 0.1, ᾱs = 4.6177, 3.1. 3 S ᾱ s Fig. 3 Value of ᾱ s with different S LQG,

11 : 1389, Riccati, (A, D) (detectable), D Q = D T D [25].,, (A, D ), Q = D T D. (A, D), [25] λ, λ 1, [ ] λi A rank( ) = n. D rank((λi A) T (λi A) + D T D) = n, (λi A) T (λi A) + Q > 0. (λi A) T (λi A) + Q = (λi A) T (λi A) + Q + Sᾱ 2 C T C > 0. rank((λi A) T (λi A) + D T D ) = n, [ ] λi A rank( ) = n, (A, D ). D, LQG,. 3.3 (Summary of the method) (1) (2)(5)., (9),, LQG, (16), Kalman (19) (22);, (30), (29),.,, (31), (32), (39)(38).. 4 (Simulation).,,,,,., : [ ] [ ] 0.7 1 0 x(k + 1) = x(k) + u(k) + w(k), 0 0.9 1 y(k) = [1 0]x(k) + v(k), [ ] [ ] 0 1 0 : w(k) N(, ), v(k) N(0, 1), 0 0 1 [ ] [ ] 1 1 0 x(0) N(, ). 1 0 1 z(k) = ᾱh(k)y(k) + n(k), : h(k), E{h 2 (k)} = 1, n(k) N(0, 1). J Q = diag{1, 1}, R = 1, S = 0.1, diag. D = diag{1, 1}, (A, D),. (38) (42), ᾱ s = 1.1230, Q = diag{1.1123, 1}, D = diag{1.0546, 1}, (A, D ),. ᾱ=1.1230 J (ū )=12.4127. Σ, [13], 50000. 4 ᾱ = 1.1230 tr1(k)=tr{e Hk {Σ(k k)}} tr2(k) = tr{γ(k)}, tr1(k), tr2(k)., E Hk {Σ(k k)}., 10 Σ. 4 Fig. 4 Trace of the expected estimate error covariance and its bound of the stable example, ᾱ

1390 30 J (ū ). 5 ᾱ J (ū ) J (ū ), J (ū ), J (ū )., ᾱ ᾱ s. 7 ᾱ J (ū ) J (ū ) Fig. 7 Value of J (ū ) and J (ū ) with different ᾱ of the unstable example 5 ᾱ J (ū ) J (ū ) Fig. 5 Value of J (ū ) and J (ū ) with different ᾱ of the stable example, [ ], 1.3 1 A=, ᾱs =2.3913. 6 ᾱ= 0 1.7 2.3913 tr1(k) tr2(k), tr1(k), tr2(k). 10 Σ J (ū ) = 427.4744,,,. 6 Fig. 6 Trace of the expected estimate error covariance and its bound of the unstable example 7 ᾱ J (ū ) J (ū ), J (ū ), J (ū ). ᾱ 2.25, ᾱ s = 2.3913,, Σ Γ.,, ᾱ ᾱ s ᾱ J (ū ).,,. 2, 2 :,, ;,,, 2.,,., S,,, 2. 5 (Conclusions).,,.,, LQG,,.,.,,.,.,,,.

11 : 1391 (References): [1] HESPANHA J, NAGHSHTABRIZI P, XU Y. A survey of recent results in networked control systems [J]. Proceedings of the IEEE, 2007, 95(1): 138 162. [2] PROAKIS J G. Digital Communications [M]. 4th Edition. Beijing: Publishing House of Electronics Industry, 2003. [3] DUEL-HALLEN A. Fading channel prediction for mobile radio adaptive transmission systems [J]. Proceedings of the IEEE, 2007, 95(12): 2299 2313. [4] ALIMOHAMMAD A, COCKBURN B F. Modeling and hardware implementation aspects of fading channel simulators [J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2055 2069. [5] MOSTOFI Y, MURRAY R. To drop or not to drop: design principles for kalman filtering over wireless fading channels [J]. IEEE Transactions on Automatic Control, 2009, 54(2): 376 381. [6] SINOPOLI B, SCHENATO L, FRANCESCHETTI M, et al. Kalman filtering with intermittent observations [J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453 1464. [7] HUANG M, DEY S. Stability of Kalman filtering with Markovian packet losses [J]. Automatica, 2007, 43(4): 598 607. [8] YOU K, FU M, XIE L. Mean square stability for Kalman filtering with Markovian packet losses [J]. Automatica, 2011, 47(12): 2647 2657. [9],. [J]., 2012, 29(10): 1317 1324. (CHEN Haixia, SUN Shuli. Optimal linear estimators for networked control systems with finite consecutive packet dropouts [J]. Control Theory & Applications, 2012, 29(10): 1317 1324.) [10] QUEVEDO D E, AHL N A, LEONG A S, et al. On Kalman filtering over fading wireless channels with controlled transmission powers [J]. Automatica, 2012, 48(7): 1306 1316. [11] SCHENATO L, SINOPOLI B, FRANCESCHETTI M, et al. Foundations of control and estimation over lossy networks [J]. Proceedings of the IEEE, 2007, 95(1): 163 187. [12] GASTPAR M, VETTERLI M. Source-channel communication in sensor networks [M] //Information Processing in Sensor Networks, 2003, 2634: 162 177. [13] DEY S, LEONG A, EVANS J. Kalman filtering with faded measurements [J]. Automatica, 2009, 45(10): 2223 2233. [14] BAHCECI I, KHANDANI A K. Linear estimation of correlated data in wireless sensor networks with optimum power allocation and analog modulation [J]. IEEE Transactions on Communications, 2008, 56(7): 1146 1156. [15] SENOL H, TEPEDELENLIOGLU C. Performance of distributed estimation over unknown parallel fading channels [J]. IEEE Transactions on Signal Processing, 2008, 56(12): 6057 6068. [16] LEONG A S, DEY S, EVANSA J S. Asymptotics and power allocation for state estimation over fading channels [J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 611 633. [17] LEONG A S, DEY S, NAIR G N, et al. Power allocation for outage minimization in state estimation over fading channels [J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3382 3397. [18] LEONG A S, DEY S, ANAND J. Optimal LQG control over continuous fading channels [C] //Proceedings of the 18th World Congress of the International Federation of Automatic Control. Italy: IFAC, 2011: 6580 6585. [19] CHARALAMBOUS C D, FARHADI A, DENIC S Z. Control of continuous-time linear gaussian systems over additive gaussian wireless fading channels: a separation principle [J]. IEEE Transactions on Automatic Control, 2008, 53(4): 1013 1019. [20] ELIA N. Remote stabilization over fading channels [J]. Systems & Control Letters, 2005, 54(3): 237 249. [21] XIAO N, XIE L, QIU L. Feedback stabilization of discrete-time networked systems over fading channels [J]. IEEE Transactions on Automatic Control, 2012, 57(9): 2176 2189. [22] ASTROM K J. Introduction to Stochastic Control Theory [M]. New York: Academic Press, 1970. [23] CLARKE R H. A statistical theory of mobile-radio reception [J]. Bell System Technical Journal, 1968, 47(6): 957 1000. [24] HOOKE R, JEEVES T A. Direct search solution of numerical and statistical problems [J]. Journal of the ACM, 1961, 8(2): 212 229. [25] LANCASTER P, RODMAN L. Algebraic Riccati Equations [M]. New York: Oxford University Press, 1995. : (1990 ),,,, Email: kerry.tian@163.com; (1967 ),,,, Email: zhanghui@iipc.zju.edu.cn.