NWC Distinguished Lecture. Blind-source signal decomposition according to a general mathematical model

Similar documents
Lecture Hilbert-Huang Transform. An examination of Fourier Analysis. Existing non-stationary data handling method

Hilbert-Huang and Morlet wavelet transformation

Enhanced Active Power Filter Control for Nonlinear Non- Stationary Reactive Power Compensation

Study of nonlinear phenomena in a tokamak plasma using a novel Hilbert transform technique

An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162)

Time Series Analysis using Hilbert-Huang Transform

Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum. of Hilbert-Huang Transform

Using modern time series analysis techniques to predict ENSO events from the SOI time series

Jean Morlet and the Continuous Wavelet Transform

Synchrosqueezed Transforms and Applications

LINOEP vectors, spiral of Theodorus, and nonlinear time-invariant system models of mode decomposition

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a

SPECTRAL METHODS ASSESSMENT IN JOURNAL BEARING FAULT DETECTION APPLICATIONS

How to extract the oscillating components of a signal? A wavelet-based approach compared to the Empirical Mode Decomposition

ON THE FILTERING PROPERTIES OF THE EMPIRICAL MODE DECOMPOSITION

HHT: the theory, implementation and application. Yetmen Wang AnCAD, Inc. 2008/5/24

We may not be able to do any great thing, but if each of us will do something, however small it may be, a good deal will be accomplished.

Empirical Mode Decomposition of Financial Data

Hilbert-Huang Transform versus Fourier based analysis for diffused ultrasonic waves structural health monitoring in polymer based composite materials

A new optimization based approach to the. empirical mode decomposition, adaptive

2D HILBERT-HUANG TRANSFORM. Jérémy Schmitt, Nelly Pustelnik, Pierre Borgnat, Patrick Flandrin

Fundamentals of the gravitational wave data analysis V

Empirical Wavelet Transform

Multiscale Characterization of Bathymetric Images by Empirical Mode Decomposition

742. Time-varying systems identification using continuous wavelet analysis of free decay response signals

Symmetric Wavelet Tight Frames with Two Generators

Th P4 07 Seismic Sequence Stratigraphy Analysis Using Signal Mode Decomposition

An Adaptive Data Analysis Method for nonlinear and Nonstationary Time Series: The Empirical Mode Decomposition and Hilbert Spectral Analysis

EMD-BASED STOCHASTIC SUBSPACE IDENTIFICATION OF CIVIL ENGINEERING STRUCTURES UNDER OPERATIONAL CONDITIONS

BSc Project Fault Detection & Diagnosis in Control Valve

ON EMPIRICAL MODE DECOMPOSITION AND ITS ALGORITHMS

Engine fault feature extraction based on order tracking and VMD in transient conditions

Topic 3: Fourier Series (FS)

Jean Morlet and the Continuous Wavelet Transform (CWT)

Introduction to Wavelet. Based on A. Mukherjee s lecture notes

Application of Hilbert-Huang signal processing to ultrasonic non-destructive testing of oil pipelines *

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

ANALYSIS OF TEMPORAL VARIATIONS IN TURBIDITY FOR A COASTAL AREA USING THE HILBERT-HUANG-TRANSFORM

Fourier Series Representation of

A New Two-dimensional Empirical Mode Decomposition Based on Classical Empirical Mode Decomposition and Radon Transform

APPLICATIONS OF THE HUANG HILBERT TRANSFORMATION IN NON-INVASIVE RESEARCH OF THE SEABED IN THE SOUTHERN BALTIC SEA

AN ALTERNATIVE ALGORITHM FOR EMPIRICAL MODE DECOMPOSITION. 1. Introduction

ABSTRACT I. INTRODUCTION II. THE EMPIRICAL MODE DECOMPOSITION

Synchrosqueezed Curvelet Transforms for 2D mode decomposition

Application of Improved Empirical Mode Decomposition in Defect Detection Using Vibro-Ultrasonic Modulation Excitation-Fiber Bragg Grating Sensing

Derivative-optimized Empirical Mode Decomposition for the Hilbert-Huang Transform

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform.

The Continuous-time Fourier

SENSITIVITY ANALYSIS OF ADAPTIVE MAGNITUDE SPECTRUM ALGORITHM IDENTIFIED MODAL FREQUENCIES OF REINFORCED CONCRETE FRAME STRUCTURES

CONTENTS NOTATIONAL CONVENTIONS GLOSSARY OF KEY SYMBOLS 1 INTRODUCTION 1

Using frequency domain techniques with US real GNP data: A Tour D Horizon

Invariant Scattering Convolution Networks

Ensemble empirical mode decomposition of Australian monthly rainfall and temperature data

The use of the Hilbert transforra in EMG Analysis

Identification and Classification of High Impedance Faults using Wavelet Multiresolution Analysis

HAIZHAO YANG CURRENT POSITION

Noise reduction of ship-radiated noise based on noise-assisted bivariate empirical mode decomposition

On Moving Average Parameter Estimation

Approaches to the improvement of order tracking techniques for vibration based diagnostics in rotating machines

ECE 533 Final Project. channel flow

AIR FORCE INSTITUTE OF TECHNOLOGY

arxiv: v1 [cs.it] 18 Apr 2016

Quadrature Prefilters for the Discrete Wavelet Transform. Bruce R. Johnson. James L. Kinsey. Abstract

EMD ALGORITHM BASED ON BANDWIDTH AND THE APPLICATION ON ONE ECONOMIC DATA ANALYSIS

Estimating Periodic Signals

DIGITAL SIGNAL PROCESSING 1. The Hilbert spectrum and the Energy Preserving Empirical Mode Decomposition

Cubic Splines; Bézier Curves

Nonparametric and Parametric Defined This text distinguishes between systems and the sequences (processes) that result when a WN input is applied

A Comparison of HRV Techniques: The Lomb Periodogram versus The Smoothed Pseudo Wigner-Ville Distribution

ONE OR TWO FREQUENCIES? THE SYNCHROSQUEEZING ANSWERS

The Empirical Mode Decomposition (EMD), a new tool for Potential Field Separation

Review of Analog Signal Analysis

A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE. Lorenzo Galleani, Letizia Lo Presti

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. VI - System Identification Using Wavelets - Daniel Coca and Stephen A. Billings

Mode Decomposition Analysis Applied to Study the Low-Frequency Embedded in the Vortex Shedding Process. Abstract

Hilbert-Huang Transform-based Local Regions Descriptors

Timbral, Scale, Pitch modifications

Applied and Computational Harmonic Analysis

SPEECH ANALYSIS AND SYNTHESIS

CHAPTER 1 INTRODUCTION TO THE HILBERT HUANG TRANSFORM AND ITS RELATED MATHEMATICAL PROBLEMS

A Spectral Approach for Sifting Process in Empirical Mode Decomposition

Discrete-time Symmetric/Antisymmetric FIR Filter Design

ECEN 667 Power System Stability Lecture 23:Measurement Based Modal Analysis, FFT

27. The pole diagram and the Laplace transform

NON-STATIONARY MECHANICAL VIBRATION MODELING AND ANALYSIS

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore

Lecture 27 Frequency Response 2

ECE Digital Image Processing and Introduction to Computer Vision. Outline

Detecting Stratigraphic Discontinuities using Wavelet and S- Transform Analysis of Well Log Data

Time series denoising with wavelet transform

Gabor multipliers for pseudodifferential operators and wavefield propagators

Blind channel deconvolution of real world signals using source separation techniques

REVIEW OF SINGLE CHANNEL SOURCE SEPARATION TECHNIQUES

Journal of Computational and Applied Mathematics Manuscript Draft

Analytic discrete cosine harmonic wavelet transform(adchwt) and its application to signal/image denoising

Wavelet analysis of non-stationary signals with applications

Gaussian Processes for Audio Feature Extraction

Introduction to Signal Processing

Linear Systems. ! Textbook: Strum, Contemporary Linear Systems using MATLAB.

Transcription:

NWC Distinguished Lecture Blind-source signal decomposition according to a general mathematical model Charles K. Chui* Hong Kong Baptist university and Stanford University Norbert Wiener Center, UMD February 16, 2017 *Research supported by ARO Grant # W911NF-15-1-0385

Contents of presentation 1. Need of scientific models 2. From ARMA to exponential sums and damped sinusoids, and to a more general signal model (GSM) 3. Is this GSM natural and useful for real-world signal representation? 4. Time-scale-frequency approach: Synchrosqueezing transform (SST) 5. A direct time-frequency approach: Phase-preserving sub-signal separation operation (or operators) (PSSO) 6. Remarks and discussions 2

I. Need of scientific models 3

Can we find the truth by just thinking without using any scientific models? Who am I? Where did I come from? Where will I be in afterlife? Thinking man in deep thoughts 4

Origin of the universe and what next? Model for extrapolation in time (13.8 billion years ago and some 40 billion years from now) Big Bang theory and prediction models 5

Origins of life Darwin s Evolution Theory: Ape and human chromosomes are 98% identical. This has been proven incorrect. In addition, humans have 23 pairs of chromosomes, while apes have 24 pairs. In fact, all primates, including: apes, gorillas, chimpanzees, and orangutans, have more chromosome pairs than humans. Dogs have 39 pairs. If humans lose a pair of chromosomes, they cannot reproduce! Although life s beginnings on earth billions of years ago, homo sapiens discovered in Ethiopia were believed to be the oldest 'modern' human beings, and lived only 160,000 years ago. 6

Every real-world problem requires a justifiable model Returning to earthly problems, consider the linear model for seismic survey 7

Sound signals are used as impulse input with (unit) impulse response output to locate oil traps 8

The main objective is to locate structural traps Two types of oil & gas traps 9

Mathematical model of structural traps The seismic survey in Slide # 7 is based on an array of discrete linear time-invariant (DLTI) systems, each with its own unit impulse response or transfer function H, defined by its z-transform: or The problem is to adopt some model of the LTI system based on the unit impulse response or its transfer function to identify the structural traps. A commonly used model is ARMA. 10

Autoregressive-Moving-Average (ARMA) Model of discrete linear time-invariant (DLTI) system with transfer function H (z) with ARMA model That is,, with transfer function: 11

Visualization of seismic data in 2D and 3D 12

2. From ARMA to Exponential sums and Damped sinusoids, and to a more general signal model (GSM) 13

Continuous linear time-invariant (CLTI) System We next consider continuous LTI systems h(t), with continuoustime input signal x(t) and output y(t). The transfer function H(s) of this system is now the Laplace transform of h(t) 14

Stability requirement of ARMA model Requirement: Zeros of the Regressive component must lie inside the unit circle; that is, the rational function is analytic in the (closed) unit disk. 15

Stability requirement of CLTI systems For convenience, we consider the model with transfer function, given by 16

Re-formulation of the transfer function (by using partial fractions) 17

From time-domain formulation to Exponential sums (1) 18

The damped sinusoidal model (2) Note: The Exponential sum model and the damped sinusoid are related by F (t ) = Re F *(t ) 19

Early development in system identification of LTI dynamic systems In 1795, Gaspard de Prony (1755-1839), a French Mathematician and Engineer, introduced a clever algorithm (called Prony's method ) to fit an exponential sum model, for estimating the parameters of an LTI system, by using 2M evenly spaced samples h (k) = F *(k) (that is, the output with delta distribution at t = k input): for k = 1,, N, with N = 2M - 1. In other words, de Prony initiated the more general where M is unknown, by choosing sufficiently large N > 2M - 2. 20

Solution by de Prony Formulating the system of 2M linear equations. Consider the polynomial: 21

The system of 2M linear equations Since for k = 0,... 2M -1, we have By introducing the Hankel matrix the above system of linear equations has the following matrix formulation: 22

Computation of the exponents After solving the above linear system, we may formulate the matrix and observe that where p(z) is the polynomial in Slide # 20. This shows that the required exponent parameters are precisely the eigenvalues of the above matrix., which are the zeros of the polynomial p(z), 23

Computation of the coefficients From the formulation of Prony s problem in Slide # 20, the coefficients of the exponential sum 24

A more general signal model (GSM) 25

3. Is this GSM natural and useful for real-world signal representation? 26

Extension to analytic signals from Hilbert to Hardy-Littlewood and to Gabor The Hilbert transform of a real-valued function f (on the real line or a bounded interval) is given, respectively, by: In view of the development by Hardy (of Hardy spaces) and Littlewood (of the boundary value problem), the notion of complex signal extension introduced in the pioneering paper, Theory of Communication, published in 1946 by J. IEE, by the Nobel Laureate Dennis Gabor using the Hilbert transform, can be called analytic extension, since the extended function is analytic in the upper half complex plane. Taking the real part of the polar formulation of the analytic extension yields: with 27

Any reasonably well-behaved signal can be represented by the GSM As an application, if a given signal f can be decomposed as the sum of n sub-signals: then Gabor s analytic extension, applied to each sub-signal, yields: as described by the GSM in (3) of Slide #25. 28

Challenges in decomposition of real-world signals Are there acceptable decomposition methods and effective computational schemes that could be applied to separate real-world signals into sub-signals? As in the consideration of damped sinusoids or exponential sums, it was already a challenge to determine the exact number M of sub-signals when some of the exponents are very close to one other. Prony s method and its more recent modifications and generalizations often fail, particularly in the presence of additive noise. 29

Example: Empirical mode decomposition (EMD) is a popular computational scheme introduced by N. Huang along with 8 co-authors published in the 1998 Proc. London Royal Society EMD consists of two stages: The sifting process is applied to decompose the given signal f(t) as a finite sum of, say K, Intrinsic mode functions (IMF s) and a remainder, R(t), which is an almost monotone function, with no noticeable oscillations. Extension of each sub-signal to an analytic signal via the Hilbert transform, followed by taking the real part of the polar representation of the extension, to meet the GSM signal format (3), as introduced in Slide # 24, namely: 30

The sifting process to decompose the given signal into sub-signals, called intrinsic mode functions (IMF s) Sifting process (see top image on right) Apply cubic spline interpolation to the local maxima of the data function to yield an upper envelope Apply cubic spline interpolation to the local minima of the data function to yield a lower envelope Compute the mean of the upper and lower envelopes Subtract this mean from the data function Repeat the above procedure to the difference of the data function and the mean Iterate the same procedure till the mean of the upper and lower envelopes is near 0 Intrinsic mode functions, IMF s (see 6 IMF s in bottom image) The difference of the given data function and the (first) sum of the means obtained from the sifting process is called the first IMF C_1 Consider the sum of the means as a new data function and apply the sifting process to obtain the second sum of means. The second IMF C_2 is the difference of the first and second sums of the means Repeat the same procedure till the sum of means does not have any local extrema; i.e. is monotonic increasing or decreasing The monotone residue function may be considered as the trend of the the data function 31

Example: a two-frequency signal 32

EMD yields two IMF s but does not recover the two cosine functions accurately, although the Hilbert transform approach gives somewhat usable estimates of their frequencies of values, 1 and 0.7 Hz 33

Model specifications required for theoretical development Although the EMD scheme decomposes any blind-source signal according to the GSM format, the performance is poor, even for the above toy example of the sum of two cosines with well separated frequencies. 34

Adaptive harmonic model 35

4. Time-scale-frequency approach: Synchrosqueezing transform, (SST) based on the AHM, with certain restrictive specifications 36

Synchrosqueezing transform (SST) This innovative approach is to introduce an instantaneous frequency information function (IFIF) of two variables, in time and scale, and then to squeeze out all the instantaneous frequencies (IF s) of all possible sub-signals at the same (fixed) time instant b, for each chosen b. For this approach to work, certain restrictive technical specifications are imposed on the AHM. First introduced, in: Then rigorously developed, in: Samples of more recent development: H. Yang, Synchrosqueezed wave packet transforms and diffeomorphism-based spectral analysis for 1D general mode decompositions, Applied and Computational Harmonic Analysis, Vol. 39(1) (2015), 33-66. J. Xu, H. Yang, and I. Daubechies, Recursive diffeomorphism-based regression for shape functions. arxiv:1610.03819, submitted to SIAM J. on Math Anal. B. Cornelis, H. Yang, A. Goodfriend, N. Ocon, J. Lu, and I. Daubechies, Removal of canvas patterns in digital acquisitions of painting. IEEE Trans. Image Proc. 26(1)(2017), 160-171. 37

Instantaneous frequency information functions (IFIF) (1) Use Meyer-like analytic wavelet for CWT in the papers by Daubechies et al (2) Replace CWT in (1) by STFT in: with (3) Replace CWT in (1) by continuous wave packet transform in: 38

Synchrosqueezing transforms (SST) or The IF s of possible sub-signals are estimated from one of the two point-sets or by curve fitting or other interpolation schemes, depending on CWT or STFT are to being used. Note: t=b, and the other two symbols are used to denote the same frequency variable. 39

SST recovery of sub-signals from IF s Note: Since the IF s are used as the limits of integration, they could be very poor estimates (as a result of their dependence on curve fitting ), so that the results of signal decomposition may not be satisfactory. Also, the big challenge by applying SST is to guess correctly the number ( M in the AHM) of IF curves to be fitted, or equivalently the number of sub-signals to be recovered. 40

Outline of SST for IF estimation and recovery of sub-signals The three steps in instantaneous frequency (IF) estimation are: 1. Computation of an IF information function (IFIF). 2. For each fixed time instant, threshold the IFIF, and apply SST integral formula at this fixed time instant to extract the desired well-separated IF data. 3. Apply curve fitting or a desirable interpolation scheme to compute the estimated (continuous-time) IF functions. Using the estimated IF functions, apply certain integral formula to recover the sub-signals. 41

Some limitations of the SST approach for blind-source signal decomposition Number of IF functions cannot be determined in general. As a result, not all sub-signals can be recovered in practice. It is difficult, if at all feasible to separate two sub-signals with the same IF but different phases (say, by some additive constant). Sub-signal recovery integral formula suffer from inaccurate IF estimation and phase distortion. 42

Example 1: Extraction of frequencies from two-frequency signals Source: Hau-tieng Wu, Patrick Flandrin and Ingrid Daubechies (Adv. Adapt. Data Anal., 2011) See Slides # 31, 32 on the unacceptable EMD IF extraction result by using Hilbert transform of the two IMF s 43

Example 1 (continued): Recovery of two sub-signals Note: phase shift 44

Example 2. Non-stationary signal Source: Hau-tieng Wu, Patrick Flandrin and Ingrid Daubechies (Adv. Adapt. Data Anal., 2011) 45

SST extracts the IF information function for curve fitting (below) and two sub-signals (in black, on right) Note: phase shift 46

Example 3. SST does not apply to separate sub-signals with very close frequencies in that the SST output is not usable for IF curve fitting Below, SST is applied to extract the frequency data from the IF information function, after thresholding 47

5. Direct time-frequency approach: Phase-preserving sub-signal separation operation (or operators), (PSSO) using the AHM, under certain mild specifications 48

Signal separation operator (SSO) Let h be any sufficiently smooth compactly supported lowpass filter. Then the SSO is defined by Here, a > 0 is used for adaptive adjustment of the lowpass window width. 49

Computation flow diagram of PSSO 50

PSSO computational scheme (1) The SSO scheme extracts the precise number of sub-signals directly from the thresholded output, for each (fixed) time instant, t. This number, M, is determined by the number of clearly separated clusters (see an example in the next slide). (2) Extrema estimations for each of the M clusters yield the M IF markers for this fixed t. (3) Finally, using these IF markers as input to the the same SSO (without changing the parameters) the blind-source signal can be separated into M sub-signals without alternation of their phases. Remark: The PSSO version of the SSO (in our paper mentioned in Slide # 46) also extracts the trend, without assuming the trend as a polynomiallike function. 51

Illustration of SSO output clusters for each fixed time instance t Source of example: Hau-tieng Wu, Patrick Flandrin, and Ingrid Daubechies (Adv. Adapt. Data Anal., 2011) 52

Illustration of SSO output clusters after thresholding 53

Returning to Example 2 (See Slides # 42, 43) SSO extracts M = 2 components and yields 2 IF s (in black, below), from the IF pointers and 2 sub-signals (in black, on right) 54

Returning to Example 3 (see Slide #44) where the original (input) function f (t ) (minus the noise) is unknown 55

PSSO discovers 4 IF pointers and extracts 4 IF s 56

Output of PSSO also displays 4 cosine functions with coefficients = 2, 1, 1, and 2 57

6. Remarks and discussions 58

Samples of recent advances A. Fast computations (with Mhaskar and Xiaosheng Zhuang) B. Irregular discrete-time signals (with Mhaskar and Zhuang) C. Replacing cosine by data-dependent shape functions (DSF) 1. Hau-tieng Wu s talk tomorrow morning 2. Haizhao Yang s poster presentation D. Hybrid considerations: EMD, SST, SSO, DSF, etc. (with Maria Van Der Walt, and with Mhaskar and Van der Walt; Initial discussions with Wu, and also with Yang) E. Higher dimensional setting, such as images (Several published papers with interesting applications, and I am sure many more will be available in the literature) 59

Thank you for your attention 60