Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Similar documents
非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Illustrating SUSY breaking effects on various inflation models

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

京都 ATLAS meeting 田代. Friday, June 28, 13

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

ATLAS 実験における荷電ヒッグス粒子の探索

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

2011/12/25

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

The unification of gravity and electromagnetism.

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

2A01 Fourier-transform spectroscopy of D + 2 using intense near-infrared few-cycle laser pulses [Abstract] [Introduction] [Methods]

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Relativistic Mean Field Model for finite nuclei and infinite matter

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Reaction mechanism of fusion-fission process in superheavy mass region

Estimation of Gravel Size Distribution using Contact Time

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Deep moist atmospheric convection in a subkilometer

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

GRASS 入門 Introduction to GRASS GIS

Taking an advantage of innovations in science and technology to develop MHEWS

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

XAFS Spectroscopy X-ray absorption fine structure

Thermal Safety Software (TSS) series

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

Introduction to Multi-hazard Risk-based Early Warning System in Japan

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Strange nuclear structures with high density formed by single/double K -- meson

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Development of Advanced Simulation Methods for Solid Earth Simulations

galaxy science with GLAO

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

Nuclear Science Seminar (NSS)

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

October 7, Shinichiro Mori, Associate Professor

分解反応で探るダイニュートロン相関 中村隆司 東京工業大学 理工学研究科

高エネルギーニュートリノ : 理論的な理解 の現状

HWS150A RELIABILITY DATA 信頼性データ

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

Is the 2006 Yogyakarta Earthquake Related to the Triggering of the Sidoarjo, Indonesia Mud Volcano?

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

Video Archive Contents Browsing Method based on News Structure Patterns

J-PARC E16 電子対測定実験の物理と実験計画

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

arxiv:nucl-th/ v2 23 Oct 2001

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

Graphene and Carbon Nanotubes. R. Saito Tohoku University

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Yutaka Shikano. Visualizing a Quantum State

Analysis of shale gas production performance by SGPE

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

SOLID STATE PHYSICAL CHEMISTRY

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Trends of the National Spatial Data Infrastructure

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

Transcription:

2016/09/13 INPC2016 @ Adelaide 1 Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei Back ground Prog. Theor. Exp. Phys. 2016, 013D01 Yoshihiko Kobayashi and Masayuki Matsuo Niigata University, Japan Ø Most excitation modes become resonances in nuclei close to drip-line. Ø Pair correlation influences strongly ground state and low-lying excitations. Ø Quasi-particle resonance (Belyaev et al. 1987) has a chance to be observed, in place of single-particle potential resonance. Purpose of present study Ø We intend to disclose novel features of the quasi-particle resonance. Example: p-wave resonance in 47 Si =( 46 Si + n)

Nucleon in continuum is influenced by pairing 2 l Low energy scattering particle l Low-lying resonance are influenced by pair correl. Fig. J. Meng, et al Prog. Part. Nucl. Phys. 57, 470 (2006)

Bogoliubov equation and quasi-particle resonance 3 pair e sp p h p Γ Sca1ering wave u lj (r) σ λ U lj (r) pair field hole orbit v lj (r) l Bogoliubov equation for the coupled single-particle motion (hole & particle components) S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) A. Bulgac, arxiv:nucl-ph/9907088 J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984) Δ 2m + U lj Δ( r) ( r) λ Δ 2m Δ( r) U ( r) + lj λ u v lj lj ( r) ( r) = E i u v lj lj ( r) ( r)

Bogoliubov quasi-particle in the continuum 4 l Scattering boundary condition for the Bogoliubov s quasi-particle l phase shift, S-matrix l elastic cross section for A+n scattering resonances in (A+n) system l Numerical model l Mean-field U(r) : Woods-Saxon potential l Pair-field Δ(r): Woods-Saxon form its strength (av. pair gap Δ) is varied

Neutron elastic scattering on 46 Si: ( 46 Si+n)* 5 l Low-lying p wave quasiparticle resonance weakly bound p orbit low-lying p wave quasi-particle resonance single-particle energy in the WS potential N=28 46 Si is near the neutron drip-line deformation is small (spherical) Ex) M. V. Stoitsov et al. PRC68. 054312 (2003) Fermi energy: -0.269 MeV is estimated by the Woods-Saxon-Bogoliubov calculation H. Oba and M. Matsuo, PRC80. 024301 (2009)

Weakly bound orbits emerge as resonances due to pairing 6 p 1/2 Elastic cross section σ 46 Si + n =0.0 MeV f 5/2 g 9/2 p 3/2 =1.0 MeV f 7/2 f 5/2 g 9/2 =0 MeV =1 MeV S n ~λ=0.269 MeV

Quasi-particle resonance in S-matrix 7 Phase shift δ l The quasi-particle resonance appears as a pole of S-matrix in complex k plane. =0.0MeV δ p1/2 =2.0MeV Elastic cross section σ p 1/2 -wave Im( S p1/2 ) σ p1/2

Dependence on pair correlation strength Δ l p 1/2 -wave in ( 46 Si+n) _ 8 Elastic cross section σ 46 Si + n Phase shift δ 46 Si + n l The pairing strength Δ =0.0 3.0MeV Cf. Typical value of pair gap Δ= 12.0/ A MeV= 12.0/ 46 1.7 MeV

Width Γ & Resonance energy e R 9 Phase shift Δ=3.0 MeV 46 Si + n Fitting function 2( e er ) δ ( e ) = arctan + a( e er ) + b Γ Width Γ Δ=2.0 MeV Δ=1.0 MeV Resonance energy e R e barriar =0.5 MeV l Both Γ and e R increase for larger pairing strength. l Increase of Γ is modest l moderate value of Γ even for e R > barrier height

Comparison with simple potential resonance 10 e R -Γ relation Width Γ Potential resonance 2p1/2 Δ=0, e=0 ~ 0.6 MeV Quasi-particle resonance Δ=0~3 MeV, e 2p1/2 =0.251 MeV Δ=0~3 MeV, e 2p1/2 =-0.056 MeV Resonance energy e R Pairing reduces the width compared at the same resonance energy NB. Opposite trend known previously for deep-hole quasi-parvcle resonance Γ Δ 2 e R =0.45 MeV Δ [MeV] 0.0 1.634 1.897 Γ [MeV] 0.854 0.652 0.453 ΔV[MeV] 3.677 2.0 0.0 e sp [MeV] 0.450 0.250-0.056

Width Γ Systematics of resonance width Γ and resonance energy 11 Pairing strength Δ is varied (a) Position of 2p 1/2 orbit is varied (b) e barriar Resonance energy e R e barriar e R Novel features of quasi-particle resonance l The width has wide range of variation, not limited to the potential resonance l It is allowed to exist above the barrier l Resonance width is necessarily smaller than Γ(s.p. potential resonance) pair gap Δ & position of 2p 1/2 orbit 2p 1/2 λ

SAMURAI experiments for unbound nuclei l SAMURAI experiments@ribf (2012~) n ( 20 C+n)* 20 C ( )priv. comm. Takashi Nakamura

S-wave scattering in ( 20 C + n) =0 ~ 5 MeV varied Resonance-like Elastic cross section σ σ s1/2 Phase shift δ δ s1/2 These are very different from the low-energy formula k cot δ 1/a + 1/2 k 2 r eff Δ [MeV] 1/a [fm -1 ] r eff [fm] 0.0 0.0790 5.373 1.0 0.00825-1.478 2.0-0.9279-109.617 3.0 0.3160-69.521 4.0 0.3018-14.192

S-matrix behavior in ( 20 C + n) s-wave Δ =0.0MeV Δ =1.0MeV Δ =2.0MeV Re( S s1/2 ) Im( S s1/2 ) A resonance pole emerges at low energy

Conclusion 12 We have investigated effects of the pair correlation on low-lying neutron resonance in n-rich drip-line nuclei l P-wave resonance in 47 Si* ( 46 Si + n scattering) It exhibits novel behaviors, not seen in s.p. potential resonance l Resonance is allowed to exist above the barrier energy l The pairing effect on the resonance width has two faces: i) to increase the width (in case of hole origin e s.p < Fermi eng) ii) to REDUCE the width (in the other case e s.p > Fermi eng) l Consequently, its width is necessarily smaller than the s.p. potential resonance Outlook l S-wave resonance /scattering is more dramatic..under study l Confrontation to experiments. 45 Si* 47 Si* 21 C* 10 Li*

Backup

Analysis of the resonance wave functions l Probability distribution of the resonances with e R =0.45 MeV u p1/2 (r) 2 + v p1/2 (r) 2 :the sum of particle component and hole component Δ =0.0 Δ =1.63 Δ =1.897 R=4.550 fm l The hole component which is localized inside the nucleus ( v p1/2 (r) 2 ) becomes larger with increasing of. The reducing of the width of particlelike quasi-particle resonance.

Analysis of the resonance wave functions l Probability distribution of the hole-like quasi-particle resonances with e R =1.50 MeV. Δ =1.0 Δ =2.0 Δ =3.0 l The hole component ( v p1/2 (r) 2 ) decreases with increasing of. (opposite behavior of particle-like case) The width of hole-like quasi-particle resonance is increased by the pairing. S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) A. Bulgac, Preprint(1980); nucl-th/9907088

The Hartree-Fock-Bogoliubov equation l The HFB equation in the coordinate spaced J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984) ( ħ 2 /2m d 2 / dr 2 + U lj (r) λ&δ(r)@δ(r)& ħ 2 /2m d 2 / dr 2 U lj (r)+λ )( u l ( φ i (1) (x)@ φ i (2) (x) )= 1/r ( u lj (r)@ v lj (r) ) [ Y l (θ,φ) χ 1/2 U lj (r): HF potential with l s interaction, (r): Pair (σ)] jm potential l The pairing correlation is described by the pair potential. l Scattering boundary condition for the Bogoliubov s quasi-particle 1/r ( u lj (r)@ v lj (r) )=C( cos δ lj j l ( k 1 r) sin δ lj n l ( k 1 r) @D h l (1) (i κ 2 r) ) r C( sin ( k 1 r lπ/2 + δ lj ) / k 1 r @0 ) k 1 = 2m(λ+E)/ ħ 2, κ 2 = 2m(λ E)/ ħ 2 C= 2m k 1 / ħ 2 π S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) M. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)

The BCS theory in nuclear physics l Superconductors have been described by the BCS theory with the electron Cooper pairs (1957). l Bohr, Mottelson and Pines applied the BCS theory to the nuclear excitation spectra (1958).

Width Γ vs. Resonance energy e r l The resonance width and energy are extracted from the calculated phase shifts for quantitative analysis. Δ =3.0 46 Si + n Δ =2.0 Fitting function δ(e)=arctan( 2(e e R )/Γ )+a(e e R )+b Δ =1.0 Both the resonance width Γ and the resonance energy e R increase as the strength of the pairing Δ increases.

The pairing has the effect of reducing the width The dependence of s.p. resonance width and energy ( =0.0 MeV) on V 0 Δ Γ Δ V 0 e sp e R =0.45MeV [MeV] 0.0 1.634 1.897 [MeV] 0.854 0.652 0.453 [MeV] 3.677 2.0 0.0 [MeV] 0.450 0.250-0.056 The dependence of q.p. resonance width and energy ( e 2p1/2 =0.251 MeV) on The dependence of q.p. resonance width and energy ( e 2p1/2 = 0.056 MeV) on l In order to extract the mixing effect by the pairing, we compare these three curves at the same resonance energy ( e R =0.45 MeV).

R-process and neutron-rich nuclei l Our ultimate goal: we contribute the understand of neutron capture phenomena in the r-process using many-nucleon theory (nuclear structure and reaction). l R-process: http://www.nishina.riken.jp Ø Rapid neutron capture and β-decay in neutronrich nuclei. Ø Site: supernova explosion and neutron star merger. Energy scale: E 1 MeV l We need describe low-energy neutron capture phenomena in neutron-rich nuclei.

Low-energy neutron capture and continuum l The temperature of supernova:t~ 10 7 K 10 9 K E~1keV 0.1MeV l The structure of continuum near neutron emission threshold in neutron-rich nuclei is important for the r-process neutron capture phenomena. l We study low-lying single-particle resonance in neutron drip-line nuclei with the pairing correlation.

The width is proportional to the square of the pair gap. The resonance width and the pairing correlation Well bound nuclei λ 8.0 l Quasi-particle resonance associated with a deephole orbit can emerge. l In analysis of the resonance width, the pairing effect is treated in a perturbative way. ( ε i λ) 2 Δ 2 S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) A. Bulgac, Preprint(1980); nucl-th/9907088 J. Dobaczewski et al., Phys. Rev. C 53 2809 (1996) l The resonance width is evaluated on the basis of Fermi s golden rule. Γ i =2π d 3 r φ i ( r )Δ( r ) φ ε ( r ) 2 average 2

The resonance width and the pairing correlation Weakly bound nuclei λ 0.0~ 1.0 l The pairing correlation may cause strong configuration mixing between weakly bound orbits and low-lying continuum orbits. ( ε i λ) 2 2 l The perturbative description may not be applicable. We expect an undisclosed relation between the quasi-particle resonance and the pairing. We analyze in detail how the width of the low-lying (E 1MeV) quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei without perturbative way.

The Hartree-Fock-Bogoliubov theory (which is equivalent to the Bogoliubov-de Gennes theory) l The generalized Bogoliubov transformation ψ(x)= i=1 φ i (1) (x) β i φ i (2) (x) β i x= r, σ β i HFB =0 l Bogoliubov quasi-particle has the two components. φ i (x)=( φ i (1) (x)@ φ i (2) (x) )= 1/r ( u lj (r)@ v lj (r) ) [ Y l (θ,φ) χ 1/2 (σ) (with spherical symmetry) Upper component: particle component Lower component: hole component The upper component could be scattering wave in weakly bound nuclei. J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A 422 103 (1984) My notation is same as M. Matsuo, Nucl. Phys. A 696, 371 (2001)

The Hartree-Fock-Bogoliubov equation l The density and the pairing density ρ(x)= HFB ψ (x)ψ(x) HFB = i φ i (2) (x) 2 ρ (x)= HFB ψ (x)ψ(x) HFB = i φ i (1) (x) φ l The HFB equation in the coordinate space J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984) ( ħ 2 /2m d 2 / dr 2 + U lj (r) λ&δ(r)@δ(r)& ħ 2 /2m d 2 / dr 2 U lj (r)+λ )( u lj ( φ i (1) (x)@ φ i (2) (x) )= 1/ r ( u lj (r)@ v lj (r) ) [ Y l (θ,φ) χ 1/2 (σ)] jm U lj (r): HF potential with l s interaction, (r): Pair potential l The pairing correlation is described by the pair potential. Δ(r) ρ (r)

Asymptotic form of quasi-particle in finite nuclei l The nucleus has finite size. For sufficiently large region (r ) U lj (r) r =0, (r) r =0 J. Dobaczewski and W. Nazarewicz arxiv: 1206.2600 ħ 2 /2m d 2 / dr 2 u lj (r)=(λ+e) u lj (r) ħ 2 /2m d 2 / dr 2 v lj (r)=(λ E) v lj (r) l The quasi-particle spectrum E< λ J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984) : discrete states E> λ : continuum states

Scattering boundary condition l We consider a system consisting of a superfluid nucleus and impinging neutron. We adopt an approximation: The unbound neutron is treated as an unbound quasi-particle state, governed by the HFB eq., built on a pair-correlated even-even nucleus. l Scattering boundary condition on the Bogoliubov quasi-particle (with positive E). 1/r ( u lj (r)@ v lj (r) )=C( cos δ lj j l ( k 1 r) sin δ lj n l ( k 1 r) @D h l (1) (i κ 2 r) ) r C( sin ( k 1 r lπ/2 + δ lj ) / k 1 r @0 ) k 1 = 2m(λ+E)/ ħ 2, κ 2 = 2m(λ E)/ ħ 2 C= 2m k 1 / ħ 2 π S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) M. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)

The possibility of observing the q.p. resonance l The level density of low-lying region is low. Thus coupling to complex configuration are expected to be suppressed. l At the same resonance energy, the width of particle-like q.p. resonance is narrower than that of s.p. potential resonance. l The q.p. resonance can exist above the centrifugal barrier. l The order of q.p. resonances is opposite to the order of s.p. potential resonances.

s wave and the pairing correlation in drip-line nuclei l The neutron halo is a typical example of the pairing correlation effect on weakly bound s wave neutron. Ex) The studies of s wave and the pairing correlation in drip-line nuclei p Pairing anti-halo effect K. Bennaceur et al., Phys. Lett. B 496 154 (2000) Diverging wave function is suppressed by the pairing p Reduced effective pair gap I. Hamamoto, B. R. Mottelson Phys. Rev. C 69 064302 (2004) Influence of the pairing on s wave is small l Not only weakly bound s wave neutron but also Ø virtual state at 0 energy Ø Low-energy s wave sca1ering are influenced by the pairing.

20 C における一中性子弾性散乱 :( 20 C+n)* l 低エネルギー s 波中性子散乱の分析を 20 C における一中性子弾性散乱を通して行う 弱束縛 s 軌道 virtual state l Woods-Saxon ポテンシャル中の弱束縛 2 s1/2 軌道を用意 N=14 e sp δ V 0 =0.0 1d 5/2 : -0.221 MeV Fermi : -0.230 MeV 2s 1/2 : -0.250 MeV

Virtual state と一粒子軌道 σ s1/2 δ s1/2 l δ V 0 =3.0 のときに Virtual state となる l この振る舞いは 2s 1/2 軌道の 1 粒子エネルギーの結果と矛盾しない δ V 0 =0.0

低エネルギー公式でvirtual stateを記述する l 低 0エネルギー極限の低エネルギー公式を用いた Fittingにより 散乱長 (a) と有効距離 (r eff ) を位相のずれ k cot δ 1/a + 1/2 k 2 r eff から抽出する l 低エネルギー公式が有効だと考えられる範囲でFitting を行う (0<e sp <0.3 MeV) k r eff 1.0 δv 0 [MeV] 1/a [fm -1 ] r eff [fm] 0.0 0.0790 5.373 1.0 0.0590 5.839 2.0 0.0335 6.401 3.0-0.000363 7.275 4.0-0.0475 8.762 5.0-0.1981 11.296 6.0-0.2466 16.637 1/a が非常に小さい値 (Virtual state)

Virtual state は対相関によっても生ずることがある σ s1/2 δ s1/2 l Δ の変化によっても影響を受けていることが分かる l 位相のずれの振る舞いより Δ =1.0 Δ =2.0 : ギリギリ束縛 : 連続状態中 e sp δ V 0 =0.0 1d 5/2 : -0.221 MeV Fermi : -0.230 MeV 2s 1/2 : -0.250 MeV

対相関効果は低エネルギー公式では記述できない l 対相関なしのときと同様に 低エネルギー公式から散乱長と有効距離を抽出する k 1 = 2m(λ+E)/ ħ 2 l 波数はparticle 成分波動関数のもの 対相関あり Δ [MeV] 1/a [fm -1 ] r eff [fm] 0.0 0.0790 5.373 1.0 0.00825-1.478 2.0-0.9279-109.617 3.0 0.3160-69.521 4.0 0.3018-14.192 5.0 0.2862-5.711 l 散乱長の符号がポテンシャル散乱とは異なる l 有効距離が負の値になる Δ 低エネルギー公式を越える振る舞い

結論 :virtual state(s 波散乱 ) に対する対相関効果 l 対相関の効果によってもVirtual stateが生ずる l 位相のずれや弾性散乱断面積は ポテンシャル散乱のときとは異なる振る舞いをする l 低エネルギー公式を超える振る舞い k cot δ 1/a + 1/2 k 2 r eff 対相関なし δ V 0 対相関あり Δ 課題 : 平方井戸型ポテンシャルを用いた解析的分析実験データ (SAMURAI) との比較

2016/08/29(Mon.) The 15th CNS Summer School@Nishina hall, RIKEN Effects of pairing correlation on the s-wave scattering in neutron-rich nuclei Yoshihiko Koayashi, Masayuki Matsuo (Niigata University, Japan) Ø Pairing correlation and continuum coupling in weakly bound nuclei (neutron-rich nuclei) Ø The Hartree-Fock-Bogoliubov theory in the coordinate space (Bogoliubov-de Gennes theory) Ø Numerical results for ( 20 C+n)*: σ s1/2, δ s1/2, a, and r eff Ø Conclusion and perspective

Pairing correlation influences the continuum l Many nuclei with open-shell configuration have superfluidity generated by the pairing correlation. Pair gap in nuclei ~ 12.0 A ~O(1 MeV) A. Bohr and B. R. Mottelson Nuclear Structure Figure is taken from J. Meng et. al., Prog. Part. Nucl. Phys. 57, 470 (2006) l The pairing correlation causes configuration mixing Ø among bound orbits in well bound nuclei. λ~8 MeV Ø involving both bound and unbound (continuum) orbits in weakly bound nuclei. λ~0 MeV

Scattering particle is influenced by the pairing Figure is taken from J. Meng et. al., Prog. Part. Nucl. Phys. 57, 470 (2006) We can expect that l Low energy scattering particle l Low-lying resonance are influenced by the pairing. l In present study, we analyze properties of low energy s-wave scattering and virtual state on neutron-rich nuclei with the pairing correlation. l Low angular momentum wave (s and p) can approach nuclei easily due to no or small centrifugal barriers.

Pairing theory in the coordinate space is needed l The Hartree-Fock-Bogoliubov theory can describe both the pairing correlation and scattering waves. Generalized Bogoliubov transformation Hartree-Fock- Bogoliubov equation J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A 422 103 (1984) This is called the Bogoliubov-de Gennes theory in solid state physics. Hole component ψ(x)= i=1 φ i (1) (x) β i φ i (2) (bound (x) β i w.f. ) Particle component Hartree-Fock (can be sca1ering w.f. ) potenqal ( ħ 2 /2m d 2 / dr 2 + U lj (r) λ&δ(r)@δ(r)& ħ 2 /2m d 2 / d Pair potenqal ( φ i (1) (x)@ φ i (2) (x) )= 1/r ( u lj (r)@ v lj (r) ) [ Y l

Numerical calc.: Boundary condition and potentials l Scattering boundary condition (E> λ) 1/r ( u lj (r)@ v lj (r) )=C( cos δ lj j l ( k 1 r) sin δ lj n l ( k 1 r) @D h l (1) (i κ 2 r) ) r C( sin ( k 1 r lπ/2 + δ lj ) / k 1 r @0 ) k 1 = 2m(λ+E)/ ħ 2, κ 2 = 2m(λ E)/ ħ 2 C= 2m k 1 / ħ 2 π S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) M. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003) l HF potential and pair potentialßwoods-saxon shape U lj (r)=[ V 0 +( l s ) V SO r 0 2 /r d/dr ] f WS (r) f WS (r)= [1+exp( r R/a )] Δ(r)= Δ 0 f WS (r) We can control the shapes easily through the parameters. l Δ 0 is controlled by the average pair gap Δ. Δ = d r r 2 Δ(r) f WS (r) / d r r 2 f WS (r) I. Hamamoto, B. R. Mottelson, Phys, Rev. C 68 034312 (2003)

Neutron elastic scattering on 20 C:( 20 C+n)* l Low energy s-wave scattering on 20 C 2s 1/2 orbit is located around the continuum threshold virtual state l Weakly bound 2s 1/2 orbit in Woods-Saxon potential N=14 e sp δ V 0 =0.0 1d 5/2 : -0.221 MeV Fermi : -0.230 MeV 2s 1/2 : -0.250 MeV

( 20 C+n)*: elastic cross sections and phase shifts σ s1/2 δ s1/2 l Calculation is performed for various values of the potential depth (δ V 0 ). l δ V 0 =3.0 MeV case corresponds to a virtual =0.0 MeV

( 20 C+n)*: scattering length and effective range l The scattering length (a) and the effective range ( r eff ) are extracted from the calculated phase shift with lowenergy effective range formula. l Fitting is done in 0< e sp <0.3 MeV. applicable region of the effective range formula: k cot δ 1/a + 1/2 k 2 r eff k r eff 1.0 δv 0 [MeV] 1/a [fm -1 ] r eff [fm] 0.0 0.0790 5.373 1.0 0.0590 5.839 2.0 0.0335 6.401 3.0-0.000363 7.275 4.0-0.0475 8.762 5.0-0.1981 11.296 6.0-0.2466 16.637 Virtual state ( 1 a is very small value.)

Elastic cross section and phase shift with pairing σ s1/2 δ s1/2 0.0 MeV l Calculation is performed for various values of the pairing strength ( ). l σ s1/2 and δ s1/2 are influenced by the pairing.

Pairing effect cannot be described by effective range formula l The scattering length and the effective are extracted from the calculated phase shift. k 1 = 2m(λ+E)/ ħ 2 l k 1 is k of the particle component. 対相関あり Δ Δ [MeV] 1/a [fm -1 ] r eff [fm] 0.0 0.0790 5.373 1.0 0.00825-1.478 2.0-0.9279-109.617 3.0 0.3160-69.521 4.0 0.3018-14.192 5.0 0.2862-5.711 l The nature of extracted results are very different from =0.0 MeV case. beyond the effective range formula

Conclusion and perspective l Elastic cross section σ lj and phase shift δ lj are influenced by the pairing strongly. l The effect of pairing correlation cannot be described by the effective range formula. l In progress :analysis of the S-matrix pole with. Δ =0.0MeV Δ =1.0MeV Δ =2.0MeV Re( S s1/2 ) Im( S s1/2 )