Commentationes Mathematicae Universitatis Carolinae

Similar documents
Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Carolinae. Mathematica et Physica

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Acta Universitatis Carolinae. Mathematica et Physica

Mathematica Bohemica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Carolinae. Mathematica et Physica

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Czechoslovak Mathematical Journal

Mathematica Bohemica

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Acta Mathematica et Informatica Universitatis Ostraviensis

Časopis pro pěstování matematiky

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Acta Mathematica Universitatis Ostraviensis

Czechoslovak Mathematical Journal

Archivum Mathematicum

Commentationes Mathematicae Universitatis Carolinae

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Linear Differential Transformations of the Second Order

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Archivum Mathematicum

Czechoslovak Mathematical Journal

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Acta Universitatis Carolinae. Mathematica et Physica

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

Mathematica Bohemica

Časopis pro pěstování matematiky a fysiky

Commentationes Mathematicae Universitatis Carolinae

Archivum Mathematicum

MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS

Commentationes Mathematicae Universitatis Carolinae

Archivum Mathematicum

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Applications of Mathematics

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

TRIANGULAR NORMS WITH CONTINUOUS DIAGONALS

Mathematica Bohemica

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

Časopis pro pěstování matematiky

Mathematica Slovaca. Dragan Marušič; Tomaž Pisanski The remarkable generalized Petersen graph G(8, 3) Terms of use:

Časopis pro pěstování matematiky

Applications of Mathematics

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

Mathematica Bohemica

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

EQUADIFF 6. Jean-Claude Nédélec Mixed finite element in 3D in H(div) and H(curl) Terms of use:

Kybernetika. István Berkes; Lajos Horváth Approximations for the maximum of stochastic processes with drift

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

Computing the Norm A,1 is NP-Hard

Uniqueness theorem for p-biharmonic equations

EXISTENCE OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR AN INFINITE SYSTEM OF NONLINEAR DIFFERENTIAL-FUNCTIONAL EQUATIONS OF ELLIPTIC TYPE

ON MATRIX VALUED SQUARE INTEGRABLE POSITIVE DEFINITE FUNCTIONS

EXISTENCE OF THREE WEAK SOLUTIONS FOR A QUASILINEAR DIRICHLET PROBLEM. Saeid Shokooh and Ghasem A. Afrouzi. 1. Introduction

Časopis pro pěstování matematiky a fysiky

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Časopis pro pěstování matematiky a fysiky

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

2 Statement of the problem and assumptions

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

Chapter 10: Partial Differential Equations

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Commentationes Mathematicae Universitatis Carolinae

A Fixed Point Theorem and its Application in Dynamic Programming

p. 6-1 Continuous Random Variables p. 6-2

Boundedness of solutions to a retarded Liénard equation

Upper Bounds for Partitions into k-th Powers Elementary Methods

Notes on Integrable Functions and the Riesz Representation Theorem Math 8445, Winter 06, Professor J. Segert. f(x) = f + (x) + f (x).

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

July 21 Math 2254 sec 001 Summer 2015

tidissomsi D DC if: RELATIVE INVARIANTS AND CLOSURE HARD COPY MICROFICHE MEMORANDUM Q*^M-4209-ARPA ßmf&t&tfa«. Richard Eeliman and John M.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

EQUADIFF 7. Linard Eduardovič Reizinš Theory of completely integrable equations. Terms of use:

EXTENSIONS OF CONTINUOUS FUNCTIONS FROM DENSE SUBSPACES

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

Transcription:

Commentationes Mathematicae Universitatis Carolinae Pavel Drábek Remarks on multiple periodic solutions of nonlinear ordinary differential equations Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 1, 155--160 Persistent URL: http://dml.cz/dmlcz/105984 Terms of use: Charles University in Prague, Faculty of Mathematics and Physics, 1980 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 21, 1 (1980) REMARKS ON MULTIPLE PERIODIC SOLUTIONS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS Pavel DRABEK Abstract: We prove the existence and multiplicity of periodic solutions for nonlinear ordinary differential equations of the type u"(x) + g(u(x)) = f(x) under the various conditions upon the function g. Key words: Nonlinear ordinary differential equations, periodic problems. Classification: 34C25 * Introduction. Our starting point have been the papers [l] f C2]. There are given in [2, Theorem 101 some conditions upon the right hand side f to obtain at least one solution of periodic problem u"(x) + g(u(x)) = f(x) (1) Г i(0) = u(t), u'(0) = u'(t), l u( where T6(0,«ir) and g is X -periodic function on TR with some X > 0. In this article we present some multiplicity results for the solvability of (1) using the approach indicated in Tl,.26.10] and in f2, Theorem 10], under the assumption that g is a bounded function, generally not periodic, with bounded derivative on K. The presented sufficient conditions for the solvability of (1) make restriction only - 155 -

on the Lj-norm of the right hand side t in distinction from the conditions presented in 1121. If we put g(x) = sinx, in (1), we obtain the mathematical pendulum equation. 2. Preliminaries. Let T>0 and let us denote C 0, the Banach space of all continuous and T-periodic functions defined on a real line R with the norm I u 1 _ = max iu(x)l. C 0, Xt ir Let, further, g be a continuous real-valued function such that g' exists almost everywhere in E and there exist constants M.^0, K>0, t Q > 0 such that (2) g( )UM f ig'(puk for all i I > t. Assume, in addition, that g is not a constant function. Definition. For p, q such that (3) a a in-lstf^q-p^j 3^ g( ) = ^ v <s IK * feft we put M^ n -MJ um; n, where K p,q p,q p,q M p,q = * d R ^CpC^K, O^c^c^f <c X fc 2 > => ~*g(f)>p, f * <-c 2,-c 1 > -> g( )<q,d4c 2 - c 1^, M q={d6r ; c 19 c 2 e R. o^cl < c 2, f e <c 1,c 2 >^-=5> «^>g( )<q, 6 < -e^-c^ «-> g( )>P, d^c 2 - c.jj. If sup U n ^ oo for each p, q, satisfying (3), then g is Pf H called the expansive function. Assume that the sets g (G), g"c5) do not contain a - 156--

nondegenerated interval. Slightly modifying the proof of Theorem 8 from T21 we obtain Lemma 1. Let f e C 0,, x Q e R and K<sr 2 /ir. If u.^, u 2 are solutions of (1) such that u 1 (x Q ) = u 2 (x Q ). Then u-* and Ug coincide on E There is given in 21 a sketch of the proof of Lemma 2. Let f C 0, and K< tf 2 /1T. Then the Dirichlet problem г u"(x) + g(c+u(x)) = f(x),xe(0,t), (4).(0) = u(t) = 0 l u( has a unique solution u e C «0,T» for arbitrary c 6 R (see also CI, Sec. 4.14, 4.191). 3. Main result Theorem. Let fec 0, and K-csr /2r. Then the problem (1) has at least one T-periodic solution if G<q^i f f(x)dx^p<g, x 0 T*M + Tf 1 if(x) dx<sup 11. J p, q 0 Proof. Denote by If ~ the solution of c,i (4) and put v c,f (x) = c V + C(f (x - kt) for x6<kt f (k+l)t> (k is an integer). Then v fl f is a T-pec,i riodic solution of (1) if and only if T T /g(v. ^(x))dx =/ f(x)dx. J 0 c» r 'o Let us define a function < <«.: IR > R > ~ 157 -

$ f :c ) > J g(v c f (x))dx. The Rollers theorem implies the existence of such x c e (0,T) that v Cff(x c ) = 0. Using this, we obtain (5) 1 v'.p(y)l ^ f g(c+tf.p(x))dx I + / f (x)dx I -4 T m + J* I f(x)ldx, y <0,T>, cek, (6) l^ff ( yi ) -v c>f (y 2 )l- z sug T> l^>f (z)\ y i. y 2 la A + T / lf(x)ldx, y lf y 2 <O f T> f c 6 R From (6) and from the assumption TrU + T I i f (x)l dx < < sup K 14 we obtain c,,c 0 G R such that p,q 1» 2 (7) $ f (c 1 )<Tq and $ f (c 2 )>Tp. Let us suppose that lim d^ =- d Bien according to nv~*>oo n (5), (6) the set ivi -*?.--i satisfies the assumptions of [3, Theorem 1.5^4] and so it is relatively compact in the space of two times continuously differentiable functions on <0,T>. This fact together with Lemma 2 imply that there exists exactly one v^ ~ which is the solution of (4) and 9 <$.p(d ) = lim 3>.p(d^). So D.» is a continuous function and r o m-^o& r n x r from (7) we obtain c-> G(C,,C 2 ) such that $ f (c 3 ) = J fix) dx. Then v c f is the solution of (1). Corollary 1, Let fec 0,, K<jr /Or. Suppose, moreover, that g is an expansive function, sup M 1 S = oo, i«l,2 and (2^> S~ (G) are both empty or both infinite. Then the problem (1) has infinitely many distinct solutions if and - 158 -

only if &< J T f(x)dx<g, in the caae g^cg) «g" 1^)» 0; Q<^ J f(x)dx<g, f = G, f = Q, in the caae g'^cp+flf, Proof. There are p,q e R auch that G<Q-=T J^f(x)dx-^p<Q, g _1 (G)*0. in the caae g~ (G) = 0, g" (G) = 0. Because of sup M* = P»" = oo, i=l,2, we obtain "f c n^n= i c ^ t c n^cm :for n + m» $ f (c n ) =J^Tf(x)dx. If g" 1 (G)#0, g"' 1 (G)^0 then for each k-. g (G), resp. k 2 &g" (G), the function u = k,, reep. u = k.->, i3 the eolution of (1) with f = Q, re9p. f = G. The nece3sity of the condition follows from the fact that each periodic aolution u of (1) must satisfy / T gcu(x))dx = jt T f(x)dx. Corollary 2. Let f C 0,, K<ar /OT and, moreover, let g be a if -periodic function. Then the problem (1) has at least two distinct solutions u^, u 2 such that lu^o) ^ t, i=l,2, if -l<-p ^ / f(x)dx.4p<l and T 2!! + T f T f(x)ldx<sup II. Proof. There are fulfilled all the assumptions of Theorem and moreover $^ is a X -periodic function. There are c lf c 2 s "R > c l <:c 2 <c l + * sucn tnat ^f^cl^ s s^f^cl +^) < - T Pt $. f (c 2 )>Tp. So we obtain c^ (c lf c 2 ) and c^6(c 2,c ]L + tf) such that $..(03) s = f T f (x)dx. 0-159 - $f( c 4* s

qnation Remark. From the Corollary 1 it follows that the e- u"(x) sin (u 2 *^ (x)) = f(x) possesses an infinite number of T-periodic solutions if and only if -l-*r J^f(x)dx<l, f =-±1. From the Corollary 2 it follows that the mathematical pendulum equation u"(x) + sin u(x) = f(x) has at least two distinct T-periodic solutions u,, \Xp such that 11^(0)1 2*, 1*1,2, if -k-piif f(x)dx p<l and T 2 + T f I f (x) ldx<ar -2arcsin p. J- *Q "0 fll References S. FUfitK: Solvability of nonlinear equations and boundary value n problems, to appear in D. Riedel Publishing Company, Holland. f2] M. KONECNl: Remarks on periodic solvability of nonlinear ordinary differential equations, Comment. Math. Univ. Carolinae 16(1977), 547-562. [3] A. KUFNBR, 0. JOHN, S. FUClK: Function spaces, Academia, Prague, 1977. Katedra matematiky V SE NejedleTio sady 14, 30614 Plzen Cesk68lovensko (Oblatum 2.8. 1979) - 160 -