Časopis pro pěstování matematiky

Similar documents
Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Časopis pro pěstování matematiky

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Časopis pro pěstování matematiky a fysiky

Commentationes Mathematicae Universitatis Carolinae

Mathematica Bohemica

Archivum Mathematicum

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

Applications of Mathematics

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Archivum Mathematicum

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Časopis pro pěstování matematiky a fysiky

Czechoslovak Mathematical Journal

Archivum Mathematicum

Applications of Mathematics

Czechoslovak Mathematical Journal

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Časopis pro pěstování matematiky

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Časopis pro pěstování matematiky a fysiky

Archivum Mathematicum

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Archivum Mathematicum

Mathematica Bohemica

Linear Differential Transformations of the Second Order

APPH 4200 Physics of Fluids

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Commentationes Mathematicae Universitatis Carolinae

Acta Mathematica et Informatica Universitatis Ostraviensis

Econ Lecture 14. Outline

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

Econ 204 Differential Equations. 1 Existence and Uniqueness of Solutions

Czechoslovak Mathematical Journal

T h e C S E T I P r o j e c t

Acta Universitatis Carolinae. Mathematica et Physica

Acta Mathematica Universitatis Ostraviensis

Acta Universitatis Carolinae. Mathematica et Physica

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Czechoslovak Mathematical Journal

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Mathematica Bohemica

Applications of Mathematics

Acta Universitatis Carolinae. Mathematica et Physica

Czechoslovak Mathematical Journal

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

RELATIVE CONTROLLABILITY OF NONLINEAR SYSTEMS WITH TIME VARYING DELAYS IN CONTROL

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Mathematica Bohemica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Disconjugate operators and related differential equations

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Kybernetika. Andrzej Dziech; Andrzej R. Pach Bounds on the throughput of an unslotted ALOHA channel in the case of a heterogeneous users' population

Mathematica Bohemica

Kybernetika. Harish C. Taneja; R. K. Tuteja Characterization of a quantitative-qualitative measure of inaccuracy

Control Systems. Laplace domain analysis

PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS

274 VERDI G. VERDIEV satisfying the condition (1.1) (v i+1? v i ) (v i? v i?1 ) < 0; i = 1; : : : ; N? 1; is called a sequence of extreme values (s. e

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Časopis pro pěstování matematiky

Name: Solutions Final Exam

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

Commentationes Mathematicae Universitatis Carolinae

A SINGULAR FUNCTIONAL

Citation for published version (APA): Harinck, S. (2001). Conflict issues matter : how conflict issues influence negotiation

Commentationes Mathematicae Universitatis Carolinae

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

SPACES OF MATRICES WITH SEVERAL ZERO EIGENVALUES

Commentationes Mathematicae Universitatis Carolinae

TRIANGULAR NORMS WITH CONTINUOUS DIAGONALS

CONTROLLABILITY OF NONLINEAR SYSTEMS WITH DELAYS IN BOTH STATE AND CONTROL VARIABLES

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions

Diffusion equation in one spatial variable Cauchy problem. u(x, 0) = φ(x)

Mathematica Slovaca. Ján Borsík Products of simply continuous and quasicontinuous functions. Terms of use: Persistent URL:

ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF THE NONAUTONOMOUS ORDINARY DIFFERENTIAL n-th ORDER EQUATIONS

A L A BA M A L A W R E V IE W

On the solvability of an inverse fractional abstract Cauchy problem

THE POISSON TRANSFORM^)

EQUADIFF 7. Terms of use:

Mathematica Bohemica

Applications of Mathematics

Kybernetika. István Berkes; Lajos Horváth Approximations for the maximum of stochastic processes with drift

Journal of Inequalities in Pure and Applied Mathematics

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Transcription:

Časopis pro pěstování matematiky Jan Ligȩza On distributional solutions of some systems of linear differential equations Časopis pro pěstování matematiky, Vol. 102 (1977), No. 1, 37--41 Persistent URL: http://dml.cz/dmlcz/117944 Terms of use: Institute of Mathematics AS CR, 1977 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Časopis pro pěstování matematiky, roč. 102 (1977), Praha ON DISTRIBUTIONAL SOLUTIONS OF SOME SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS JAN LIGIZA, Katowice (Received July 17, 1975) 1. INTRODUCTION Let A(t) = (aij(t)) be a matrix such that a,-/*) is a measure in the interval (a, b) c R 1 for i,j = 1,..., n, letf(t) be a vector whose all components f ( (t) are also measures (defined in (a, b)). In this note we consider the system of equations (*), y'(t) = A(t) y(t) + f(t), where y is an unknown vector. The derivative is understood in the distributional sense. Our result generalizes some theorems for linear differential equations (see [1], [2], [3], [6]). 2. THE PRINCIPAL RESULT First we introduce some notations. Let A(t) = (aij(t)) be a matrix whose all elements a t j(t) are measures defined in the interval (a, b) (i,j = 1,..., n), let A(t) = (d tj (i)) be a matrix whose all elements d tj are functions such that a i} = [-3^]'. We put A A(t) = A(t+) A(t ), Ml(0- Z h/l(0. yo = (fu--,/«), N = IIA y*(t)-(yx( t ),...,y*n( t % ij-l n M* (0 = E M* (0> where t e («>*>)> A f +) = (<-«(*+)). -*-('-) = (*«(*-)) i=i j? e R 1. The remaining notations in this paper are taken from [5]. Theorem 2.1. We assume that a tj (t) f { {t) are measures defined in the interval (a, b)for i,j = 1,..., n. Moreover, for every t e(a, b) (2.1) det (2/ - A A(t)) * 0 det (2/ + A A(t)) * 0, where I denotes the identity matrix. Then the problem i=l 37

(2.2) f/(0 =A(t)y(t)+f(t) tу*(to) - yo /tas exactly one solution in the class V n Qtb)for every e [a, b). Remark 1. The assumption 2.1 in Theorem 2.1 is essential. This can be observed from the following Example. f/(0 (2.3) f/(i) = 2d(t)y(t) \y*(-] ly(-i)= *(--)= 00, (2.4) " fz'(0 = =-2<5(0-(0-2. i Lz*(l) = 0 (5 denotes Dirac's delta distribution). In fact, let H denote Heaviside's function let c be a constant. From the equality (2.5) H5 = id (see [4]) it is not difficult to show that the distributions y = ch z = c(h 1) are solutions of the problem (2.3) (2.4), respectively. 3. PROOFS Before giving the proof of Theorem 2.1 we shall prove some lemmas. Lemma 3.1. We assume that P l9 P 2 ev{ a>b) lim P*(t) = lim P*(t). Moreover, t->r t->r let (3.1) Pl(t) + Cl 5(t - r) = p 2 (t) + c 2 d(t - r), where P[ = p l9 P 2 = p 2, r e (a 9 b) c l9 c 2 are constants. Then c 1 = c 2. This fact follows easily from the equality (3.2) p^s) ds + ca 5(s - r) ds = p 2 (s) ds + ca S(s - r) ds. Lemma 3.2. Let a^t) f t (t) be measures defined in the interval (a, b) (i,j = = 1,..., n), e(a, b). Then there exists a number r > 0 such that: 1. a < - r < + r < b, 2. the problem (2.2) has exactly one solution y(t) in the class K (*o-r,. + r)» 3. there exist finite limits lim y*(t), 0 lim y*(t). f-+fo-r+ f-»fo + r- 38 V n

Proof. If there exists a number r > 0 such that fto+r (3.3) I W(0«\\A\\(t)dt<l, J -r then in view of [5] the problem (2.2) has exactly one solution in the class V" t0 - r, t0 + r y In the opposite case we consider matrices A x 1 0 ) A 2 ) defined as follows: (3.4) (A(t), for a<í<( 0 Mť to) = <: U(f 0 -), for <;t<b, (3.5) Hence, we have ca( + ), for a < t g A 2 (t, ) = \ ll(t), for < t < b. U(t), (3.6) A(i) = A t (t, ) + A 2 ) - H(t - ) A( -) - H( - t) A( +) (3.7) y'(i) = U 1 0 ) y(t) + 5(t - ) (A A( )) y*( ) + f(t), where U(t, ) = A x (t, ) + A 2 (t, ), A x (t, ) = (A^ ))' A 2 (t, ) = = (A 2 ))\ Moreover, there exists a number r l > 0 such that (3.8) f 0+r, U (r,r 0 )dr<l. Jto-ri Taking into account [5], we infer that the system (2.2) has exactly one solution y(t) in the class VJ, where I = ( r l9 + r x ). We claim that sup \y\* (t) < oo. tel Indeed, let us put (3.9) / = 3(t - ) (A A( )) y*( ) +f, K = 1 - " 0+ " U (t, ) At, ito-r x ЛÍ ; = ЛtO + Гl J to-ri m Then the relation (2.2) [5] imply dí, M = M,, e > 0, J = [ - r! + e, f 0 + ri - e] i-=i (a < f 0 - r x + 8 < + r x e < b). (3.10) sup \y\* (t) ^ \y 0 \ + sup \y\* (t) f U 1 0 ) dt + M tej t e J J j (3.11) snp\y\*(t)sk^(\y 0 \+M). tel Now we consider an arbitrary sequence {t k } such that t k el ** -* *o + ri -. Using (2.2), [5] (3.11), we have (k = 1, 2,...) 39

(3.12) \y*(t k ) - yt(t m )\ < sup \y\* (t) I f "f U (t, ) dt\ + I f ">.(t) dt -6l J^m I J fm <. X^dyol + M) Z*(g - Z*(t m )\ + \Gf(t k ) - Gf(t m )\, where Z' = l/, GJ = /^ * = 1,..., n. Similarly we prove that there exists a finite limit lim y*(t). Thus our assertion follows. t-+to-rt + Lemma 3.3. Let the assumptions of Theorem 2.1 be fulfilled let y(t) be a solution of the problem (2.2) in the class V\ athy Then for every t e (a, b) (3.13) y(t+) = (2I-A A(t))~ 1 [(21 + A A(i)) y(t-) + 2A F(t)] (3.14) y(t~) = (21 + A A(t))- 1 [(21 - A A(t)) y(t + ) - 2zi Fyt)], where F' = f A F(t) = F(t+) - F(t-). Proof. Let y(t) be a solution of the problem (2.2). We consider vectors y(t) y(t) defined as follows: (At) > for a < t < t (us) *o-r,\ 1 tj(tj-)> for ti <; t <!>, *Hlľ poi+), for a < * = f x (3.16) \y(t), for ^ < t < b. Then w), (3.17) y(t) = j;(r) + y(t) - H(* - r A ) y( tl -) - H( h - t) y( h +) (3.18) y'(t) = y'(t) + y'(t) + S(t - *.) (.1 y(t$. On the other h, (3.19) /(.) = U(t, *.) y(t) + d(t - h) (A A( h )) y*( h ) + J(t) + J(t) + where J=F',J=F' + 8(t-t 1 )(AF(t 1 )), f^m, iot a < t < t y (3.20) F( ( ) = J w ' UX.*!-), for t 1 <.t<b, (F(ti+), for a < t < t! (3.21) F(t) = \ K J 40 lf(t), for f. <,t < b.

Applying (3.17), (3.18), (3.19), (3.20) (3.21), we obtain (3.22) y'(t) + y'(i) + 5(i - h) (A y( h )) = U( t, tl) (y(i) + y(i)) + + U(i, tl) [-H( t - tl)y( tl -) - H(u - 0Kt!+)] + + S(t - t r ) (A A(t t )) y*( tl ) + J(t) + f(t) + 5(t - tl) (A F( tl )). Using Lemma 3.1 (3.22), we infer that (3.23) A y( tl ) = (A %)) y*( t.) + A F( tl ). An application of condition (2.1) completes the proof of Lemma 3.3. Proof of Theorem 2.1. We consider an arbitrary interval [c, d] such that c, de(a, b). Let r 0 = min (t t a, b fj), where t t e [c, d]. Then the properties of functions of locally bounded variation yield that the set of all points f A such that (3.24) P r 4 (r)d*>l- Jti-r for every 0 < r < r 0 is finite. Thus, applying (3.13), (3.14) Lemma 3.2 we can extend uniquely the local solution in the whole interval (a, b) this completes the proof of the theorem. Remark 2. Let the assumptions of Theorem 2.1 be satisfied. Then by Lemma 3.3 Theorem 2.1 it is not difficult to show that the system (*) with the initial condition y('o+) = yo (y('o ) = yo) h as exactly one solution in the class V" atb). References [1] V. Dolezal: Dynamics of linear systems, Praha 1964. [2] J. Kurzweil: Linear differential equations with distributions as coefficients, Bull. Acad. Polon. Sci. Ser. math. astr. et phys., 7(1959), 557 560. [3] A. Lasota, J. Traple: Nicoletti boundary value problem for systems of linear differential equations with distributional perturbations, Zeszyty Naukowe U. J., Prace Matematyczne, I5(1971), 103-108. [4] J. Ligeza: On the existence of the product of a measure a function of locally bounded variation, (to appear), Studia Math.. [5] J. Ligeza: The existence the uniqueness of distributional solutions of some systems of non-linear differential equations, Cas. psst. mat. 102 (1977), 30 36. [6] J. Ligeza: Cauchy's problem for systems of linear differential equations with distributional coefficients, Colloquium Math., 33 (1975), 295 303. Author's address: Mathematics Institute, Silesian University, 40 007 Katowice, Pol. 41