Recent developments in the nuclear shell model and their interest for astrophysics

Similar documents
Recent developments in the nuclear shell model and their interest for astrophysics

Shell model description of dipole strength at low energy

Advantages and Limitations Of The Shell Model

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50

NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Beyond mean-field study on collective vibrations and beta-decay

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

The nuclear shell-model: from single-particle motion to collective effects

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

Neutrinoless Double Beta Decay within the Interacting Shell Model

Probing shell evolution with large scale shell model calculations

Shell-model description for beta decays of pfg-shell nuclei

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Nuclear structure and the A 130 r-process abundance peak

The No-Core Shell Model

Large scale shell model calculations for neutron rich fp-shell nuclei

Nucleon Pair Approximation to the nuclear Shell Model

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

Shape Coexistence in Neutron-rich Strontium Isotopes at N=60

Nuclear Isomers: What we learn from Tin to Tin

Neutrino-Nucleus Reactions Based on Recent Progress of Shell Model Calculations

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

Quantum Theory of Many-Particle Systems, Phys. 540

Nuclear physics input for the r-process

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Nuclear robustness of the r process in neutron-star mergers

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

The Nuclear Shell Model Toward the Drip Lines

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations

Nuclear structure theory

Probing the evolution of shell structure with in-beam spectroscopy

Some results obtained with Gogny force included in HFB, QRPA as well as in configuration mixing GCM like approach

Theory for nuclear processes in stars and nucleosynthesis

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Cluster Models for Light Nuclei

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

arxiv:nucl-th/ v1 14 Nov 2005

Shell evolution and nuclear forces

Shell Model A Unified View of Nuclear Structure

Coupled-cluster computations of weak decays in nuclei

Projected shell model for nuclear structure and weak interaction rates

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt

with realistic NN forces

Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010

SHELL-MODEL RESULTS IN fp AND fpg 9/2 SPACES FOR

Departamento de Física, Universidad Nacional de Colombia, Colombia

Weak decays from coupled cluster computations

Shell model Monte Carlo level density calculations in the rare-earth region

Shell model approach to N Z medium-heavy nuclei using extended P+QQ interaction

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

New Frontiers in Nuclear Structure Theory

Nuclear and Radiation Physics

The Nuclear Many-Body Problem. Lecture 2

Three-Nucleon Forces and the Structure of Exotic Nuclei Jason D. Holt

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3.

Introduction to REX-ISOLDE concept and overview of (future) European projects

Nuclear structure and stellar weak interaction rates of nuclei below the 132 Sn core

The f 7/2 shell: an optimum test bench

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration

Part III: The Nuclear Many-Body Problem

Ab Initio Theory for All Medium-Mass Nuclei

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Ab Initio Nuclear Structure Theory

Introduction to NUSHELLX and transitions

Can the shell model be truly ab initio? and other questions

Intro to Nuclear and Particle Physics (5110)

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Modeling the Atomic Nucleus. Theoretical bag of tricks

Accurate Description of the Spinand Parity-Dependent Nuclear Level Densities

MICROSCOPIC NATURE OF THE PHOTON STRENGTH FUNCTION: STABLE AND UNSTABLE Ni AND Sn ISOTOPES

Magnetic rotation past, present and future

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

ab-initio alpha-alpha scattering

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse

The Nuclear Many Body Problem Lecture 3

Gamma-ray spectroscopy I

Beta decay for neutron capture

Coupled-cluster theory for nuclei

RPA and QRPA calculations with Gaussian expansion method

Structure of Sn isotopes beyond N =82

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Quantum Theory of Many-Particle Systems, Phys. 540

Light Nuclei from chiral EFT interactions

Lecture 4: Nuclear Energy Generation

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Medium polarization effects and pairing interaction in finite nuclei

Shell evolution in neutron rich nuclei

Isospin-symmetry breaking in nuclei around the N=Z line

Low-spin structure of 210 Bi

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

B. PHENOMENOLOGICAL NUCLEAR MODELS

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Transcription:

Recent developments in the nuclear shell model and their interest for astrophysics Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg FUSTIPEN topical meeting "Recent Advances in the Nuclear Shell Model" 19-20.06.2014 Kamila Sieja (IPHC) 19-20.06.2014 1 / 30

Shell model approach Calculations Ab Initio Realistic NN interactions Diagonalization in N hω h.o.space define valence space H eff Ψ eff = EΨ eff INTERACTIONS CORE build and diagonalize Hamiltonian matrix CODES Weak processes: β decays ββ decays [T 0ν 1/2 (0+ 0 + )] 1 = G 0ν M 0ν 2 m ν 2 ZASTROPHYSICS ZPARTICLE PHYSICS Collective excitations: deformation, superdeformation superfluidity symmetries Shell evolution far from stability: Shell quenching New magic numbers ZASTROPHYSICS Kamila Sieja (IPHC) 19-20.06.2014 2 / 30

Shell Model & 3N forces No-core shell model calculations with 3N forces possible for light systems (A 12). In core-shell model for heavier nuclei, 3N contribution taken into account empirically. A. Cortes and A.P. Zuker, "Self-consistency and many-body monopole forces in shell model calculations" Phys. Lett. B84 (1979) 25 Ab Initio No Core Shell Model Realistic NN&NNN forces Effective interactions Diagonalization of many body Hamiltonian Core Shell Model Phenomenological effective interactions Diagonalization of the Hamiltonian for valence nucleons Many body experimental data 16 0 + ; 1 10 11 12 13 8 2 + ; 1 B 1/2 - ; 3/2 B C 7/2 - hω=14 5/2-2 + 2 + ; 1 ; 1 16 3/2 - ; 3/2 C 16 3 + 1 + 0 + ; 1 ; 1 12 1/2 - ; 3/2 4 + 4 + 1 + ; 1 3/2 - ; 3/2 2 + 2 + ; 1 1 + ; 1 12 2 + 4 + 12 2 + 5/2 - ; 1 5/2-4 + 3/2-1 + 4 3 + 2 + 2 + 8 5/2-1/2-7/2-3/2-7/2-8 8 5/2-1/2-1 + 2 + 3/2-0 + 1 + 45/2-7/2 - ; 1 1 + 0 + ; 1 5/2-4 2 + 4 3/2-5/2-0 3 + 3 + 3/2-2 + 1/2-3/2-1 + 0 3/2-1/2-3/2-0 0 + 0 + 0 1/2-1/2 - NN+NNN Exp NN NN+NNN Exp NN NN+NNN Exp NN NN+NNN Exp NN Excitation energies in light nuclei in NCSM with chiral EFT interactions. P. Navratil et al., Phys. Rev. Lett. 99 (2007) 042501. Kamila Sieja (IPHC) 19-20.06.2014 3 / 30

SM with empirical interactions: regions of activity Kamila Sieja (IPHC) 19-20.06.2014 4 / 30

SM with empirical interactions: regions of activity PLAN: 1 Some features of shell evolution and of nuclear structure around 78 Ni 2 Non-statistical behavior of microscopic γ- strength functions and their impact on neutron capture cross sections Kamila Sieja (IPHC) 19-20.06.2014 5 / 30

Shell evolution: what have we learned? Kamila Sieja (IPHC) 19-20.06.2014 6 / 30

Stability of shell gaps in 78 Ni: the N=50 shell closure Experimental evidence at Z = 32 non conclusive Extrapolation of experimental data dangerous since shell efects are sudden Correlations in semi-magic nuclei hide the mean-field effects O.Sorlin, M.-G. Porquet, Theory essential for understanding of the shell evolution Prog. Part. Nucl. Phys. 61 (2008) 602-673 Kamila Sieja (IPHC) 19-20.06.2014 7 / 30

Stability of shell gaps in 78 Ni: the N=50 shell closure 3227.5 (5,6 + ) 940.5 [20(4)] 2287.0 (4 + ) 938.5 [60(7)] 2930.0 (5,6 + ) 646.0 [15(4)] 1348.5 2+ E exc (MeV) 2 1 0 N=49,exp (5/2 + ) 9/2 + 5/2 1/2 + + 5/2-3/2-1/2-28 30 32 34 36 Z 1348.5 [100(10)] 50 d5/2 g9/2 p1/2 40 g.s. 0+ 82 Ge 32 50 f5/2 p3/2 f7/2 28 T. Rzaca-Urban et al., PRC 76 (2007) 027302 Kamila Sieja (IPHC) 19-20.06.2014 8 / 30

82 Ge and N=50 isotones protons neutrons J π f 7/2 f 5/2 p g 9/2 d 5/2 0 + 7.69 3.76 0.55 9.65 0.36 2 + 7.79 3.76 0.45 9.61 0.41 4 + 7.87 3.81 0.32 9.67 0.35 5 + 7.62 3.63 0.75 8.53 1.48 6 + 7.62 3.64 0.74 8.57 1.43 E exc (MeV) 5 4 3 2 1 0 6 5 + + EXP vs SM 28 30 32 34 36 Z K. Sieja et al., Phys. Rev. C85 (2012) 051301R. Kamila Sieja (IPHC) 19-20.06.2014 9 / 30

Levels across the N=50 gap: role of the correlations E exc (MeV) BE (MeV) 5 4 3 2 1 0 6 5 4 3 2 6 + 5 + 5/2+ (a) 28 30 32 34 36 (b) Z 28 30 32 34 36 Robustness of the N=50 gap in 78 Ni Z ESPE (MeV) 5 0-5 -10-15 -20-25 f5/2 p3/2 p1/2 g9/2 d5/2 20 78 Ni 28 N=50 84 Se 34 38 40 Proton number No change of the g 9/2 -d 5/2 splitting between Ni and Se Possibility of evaluating (n,γ) cross sections around A=80 100 Sn 50 Kamila Sieja (IPHC) 19-20.06.2014 10 / 30

Shell evolution along isotopic chains and 3N forces K. Sieja et al., Phys.Rev.C85 (2012) 051301(R) ESPE (MeV) 5 0-5 -10 ds 0d5/2 1s1/2 8 14 16 Neutron number 5 0-5 -10 0f7/2 1p3/2 fp 20 28 32 Neutron number 5 0-5 0g9/2 gd 1d5/2-10 40 50 56 Neutron number ν ν p1/2 ν ν ν ν d3/2 s1/2 N=14 f5/2 p3/2 N=28 s1/2 d5/2 N=50 d5/2 f7/2 g9/2 16 O 22 40 48 O Ca 68 Ca Ni 78 Ni ZShell model predictions for the N = 50 gap consistent with 3N effects observed in light nuclei! A. P. Zuker, Phys. Rev. Lett. 90 (2003) 042502 ZUnderstanding three-body mechanisms essential for modeling of shell evolution in nuclear physics. Ideas how to improve DZ mass formula based on what we know about the role of 3N forces in the creation of shell gaps J. Mendoza-Temis et al., Nuc. Phys. A843 (2010) 14-36. Kamila Sieja (IPHC) 19-20.06.2014 11 / 30

3N forces: a new shell closure at N=90? Π ν 0f5/2 1p1/2 1p3/2 0f7/2 0f5/2 1p1/2 1p3/2 0f7/2 40 Ca Π ν 0h11/2 1d3/2 3s1/2 1d5/2 0g7/2 0h9/2 1f5/2 2p1/2 2p3/2 1f7/2 132 Sn N=90 gap =2.5MeV Can one make analogy between 48 Ca and 140 Sn? Kamila Sieja (IPHC) 19-20.06.2014 12 / 30

Structure at N=90 and r-process Masses around N = 90 determine the mass flow from the second to third r-process peaks (NS mergers) Calculations from PhD thesis of J. Mendoza-Temis (TU Darmstadt) Final abundances 10-3 10-4 10-5 solar r-process abundances FRDM WS3 DZ31 10-6 120 140 160 180 200 220 240 A Kamila Sieja (IPHC) 19-20.06.2014 13 / 30

Structure at N=90 and r-process Masses around N = 90 determine the mass flow from the second to third r-process peaks (NS mergers) Calculations from PhD thesis of J. Mendoza-Temis (TU Darmstadt) Final abundances 10-3 10-4 See next talk for the recent SM 10 studies around N -5 = 90 solar r-process abundances FRDM WS3 DZ31 10-6 120 140 160 180 200 220 240 A Kamila Sieja (IPHC) 19-20.06.2014 14 / 30

Nuclei above 78 Ni g9/2 p1/2 p3/2 f5/2 Π 50 40 78 Ni ν h11/2 d3/2 s1/2 g7/2 d5/2 ZKnowing s.p. structure of 79 Ni will be useful to validate the model assumptions Interaction: based on realistic G-matrix with CD-Bonn potential, empirically corrected. Proven sucessful and predictive in a large number of applications: Structure, mixed symmetry states in Zr isotopes, shell evolution between 91 Zr and 101 Sn K. Sieja et al., Phys. Rev. C79 (2009) 064310 Isomers and medium-spin structures of 95 Y, 91 95 Rb, 92 96 Sr PRC85 (2012) 014329, PRC79 (2009) 024319, PRC82 (2010) 024302, PRC79 (2009) 044304 Collectivity and j-1 anomaly of 87 Se PRC88 (2013) 034302 β-decays of Ga nuclei and structure of N = 52,54 isotones PRC88 (2013) 047301, PRC88 (2013) 044330, PRC88 (2013) 044314 Magnetic moments of 86 Kr, 88 Sr, PRC 80 (2014) 064305 Collectivity of N = 52,54 nuclei PRC88 (2013) 034327 Kamila Sieja (IPHC) 19-20.06.2014 15 / 30

Simple perspective: predictions of the pseudo-su(3) scheme Pseudo SU3 Q + k 0 12 9 6 g9/2 p1/2 p3/2 f5/2 Π 5/2 ν 7/2 h11/2 d3/2 g7/2 s1/2 d5/2 9/2 Pseudo SU3 Predictions of pseudo-su(3) model for N=52,54: Nucleus Q 0 B(E2;2 + 0 + ) 82 Zn 114 258 84 Ge 131 342 86 Se 148 436 88 Kr 117 272 84 Zn 135 362 86 Ge 151 454 88 Se 168 561 90 Kr 137 373 3 0 1/2 3/2 maximal prolate deformation in 88 Se possible triaxiality in 86 Ge Kamila Sieja (IPHC) 19-20.06.2014 16 / 30

Predictions of the pseudo-su(3) model vs SM diagonalization B(E2; 2 + -> 0 + ) (e 2.fm 4 ) 600 500 400 300 200 100 0 N=52 SM p-su(3) 30 32 34 36 Z B(E2; 2 + -> 0 + ) (e 2.fm 4 ) 600 500 400 300 200 100 0 N=54 SM p-su(3) 30 32 34 36 Zpseudo-SU(3) is a good approximation for the proton mid-shell maximal prolate deformation in 88 Se possible triaxiality in 86 Ge Z Kamila Sieja (IPHC) 19-20.06.2014 17 / 30

Triaxiality above 78 Ni? (a) SM 6 + 3260 5 + 2916 662 4 + 1757 626 147 240 4 + 389 2348 251 3 + 196 1793 751 2 + 1387 2 + 649 465 0 + 0 86 Ge Shell Model using 78 Ni core GCM-Gogny Agreement of excitation energies for the 1st excited band within kev! -matrices dimension 10 6 -feasible on a laptop -typical time of calculations: 5min to 4h on one processor -symmetry conserved (particle number and angular momentum) -cluster of 140 CPUs -typical time of calculations: 1 month K. Sieja, T.R. Rodriguez, K. Kolos and D. Verney, Phys. Rev. C88 (2013) 034327 Kamila Sieja (IPHC) 19-20.06.2014 18 / 30

Triaxiality above 78 Ni? (a) SM 6 + 3260 5 + 2916 662 4 + 1757 626 147 240 4 + 389 2348 251 3 + 196 1793 751 2 + 1387 2 + 649 465 0 + 0 86 Ge Shell Model using 78 Ni core GCM-Gogny Agreement of excitation energies for the 1st excited band within kev! -matrices dimension 10 6 -feasible on a laptop -typical time of calculations: 5min to 4h on one processor -symmetry conserved (particle number and angular momentum) -cluster of 140 CPUs -typical time of calculations: 1 month K. Sieja, T.R. Rodriguez, K. Kolos and D. Verney, Phys. Rev. C88 (2013) 034327 Kamila Sieja (IPHC) 19-20.06.2014 19 / 30

Neutron capture cross sections σ µν (n,γ) (E i,n)= π h2 1 2M i,n E i,n (2J µ (2J+ 1) T n µ Tγ ν, i + 1)(2J n + 1) T J,π tot where: E i,n,m i,n - center-of-mass energy, reduced mass of the system J n = 1/2-neutron spin transmission coefficients: T n µ = T n (E,J,π;E µ i,j µ i,π µ i ) Tγ ν = T γ (E,J,π;Em,J ν m,π ν m) ν For a given multipolarity T XL (E,J,π,E ν,j ν,π ν )=2πE 2L+1 γ f XL (E,E γ ) Key ingredients in Hauser-Feschbach calculations: description of gamma emission spectra of a compound nucleus Brink-Axel hypothesis Kamila Sieja (IPHC) 19-20.06.2014 20 / 30

Lanczos strength function method S = Ô ψ i = ψ i Ô2 ψ i The operator Ô does not commute with H and Ô ψ i is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates: Ô ψ i = S(E f ) E f, f where S(E f ) = E f Ô ψ i is called strength function. If we carry Lanczos procedure using O =Ô ψ i as initial vector then H is diagonalized to obtain eigenvalues E f and after N iterations we have the also the strength function: S(E f )= E f O = E f Ô ψ i. How good is the strength function S after N iterations compared to the exact one S? Kamila Sieja (IPHC) 19-20.06.2014 21 / 30

Lanczos strength function method S = Ô ψ i = ψ i Ô2 ψ i The operator Ô does not commute with H and Ô ψ i is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates: Ô ψ i = S(E f ) E f, f where S(E f ) = E f Ô ψ i is called strength function. If we carry Lanczos procedure using O =Ô ψ i as initial vector then H is diagonalized to obtain eigenvalues E f and after N iterations we have the also the strength function: S(E f )= E f O = E f Ô ψ i. How good is the strength function S after N iterations compared to the exact one S? Kamila Sieja (IPHC) 19-20.06.2014 22 / 30

Impact of the realistic M1 fragmentation on the neutron capture cross sections M1 microscopic strength functions in iron chain ( 53 Fe- 70 Fe), impact on (n,γ) cross sections, tests of Brink-Axel hypothesis H.-P. Loens K. Langanke, G. Martinez-Pinedo and K. Sieja, EPJ A48 (2012) 48 f M1 [1/MeV -3 ] 5.0e-08 60 4.0e-08 Fe 3.0e-08 2.0e-08 1.0e-08 0.0e+00 0 2 4 6 8 10 12 14 E γ [MeV] σ [b] 10-1 59 Fe(n,γ) 60 Fe 10-2 10-3 10-4 0.001 0.01 0.1 1 E n [MeV] State-by-state cross section 2 times larger than using Brink hypothesis Using SF of 2 + state instead of 0 + leads to larger cross sections Kamila Sieja (IPHC) 19-20.06.2014 23 / 30

Impact of the realistic M1 fragmentation on the neutron capture cross sections f M1 [10-8 MeV -3 ] f M1 [10-8 MeV -3 ] f M1 [10-8 MeV -3 ] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 J=0 + H.-P. Loens K. Langanke, G. Martinez-Pinedo and K. Sieja, EPJ A48 (2012) 48 0 2 4 6 8 10 12 14 J=2 + E γ [MeV] 68 Fe 0 2 4 6 8 10 12 14 J=4 + E γ [MeV] 68 Fe 0 2 4 6 8 10 12 14 E γ [MeV] 68 Fe σ [b] 10-3 10-4 10-5 67 Fe(n,γ) 68 Fe J=0 + J=2 + J=4 + 10-6 0.001 0.01 0.1 1 E n [MeV] State-by-state cross section 2 times larger than using Brink hypothesis Using SF of 2 + state instead of 0 + leads to larger cross sections Kamila Sieja (IPHC) 19-20.06.2014 24 / 30

Low energy enhancement of the γ-strength function Data from Oslo group Gamma strength (MeV 3 ) Microscopic strength functions are different from global parametrizations Low energy enhancement of γ-strength observed in different regions of nuclei It can influence the (n,γ) rates of the r-process by a factor of 10! A.C. Larsen and S. Goriely, Phys. Rev. C82 (2010) 014318 Evidence for the dipole nature of low energy enhancement in 56 Fe A. C. Larsen et al., Phys. Rev. Lett. 111 (2013) 242504 Gamma energy (MeV) Kamila Sieja (IPHC) 19-20.06.2014 25 / 30

What theory says about it? E. Litvinova and N. Belov, Phys. Rev. C88 (2013) 031302R Thermal continuum QRPA calculations Enhancement due to transitions between thermally unblocked s.p. states and the continuum Note the difference between T = 0 (ground state) and T > 0 (excited state) E1 strength distribution R. Schwengner et al., Phys. Rev. Lett. C88 (2013) Shell model transitions between a large amount of states (more than 14000 transitions for each parity) Enhancement due to the transitions between states in the region near the quasicontinuum A general mechanism that can be found in other mass regions Kamila Sieja (IPHC) 19-20.06.2014 26 / 30

M1-strength SM calculations in 94 Mo R. Schwengner et al., Phys. Rev. Lett. C88 (2013) KS, present SM <B(M1)> ( N 2 ) 0.1 0.08 0.06 0.04 0.02 94 + Mo - J=0i -6i, i=1,40 0 0 2 4 6 8 E γ (MeV) Model space: π(0f 5/2,1p 3/2,1p 1/2,0g 9/2 ) ν(0g 9/2,1d 5/2,0g 7/2 ) truncations of allowed p-h excitations SMI: Model space: π(0f 5/2,1p 3/2,1p 1/2,0g 9/2 ) ν(1d 5/2,0g 7/2,1d 3/2,2s 1/2,0h 11/2 ) full space diagonalization ZLow energy M1 enhancement looks independent on model space & effective interaction Kamila Sieja (IPHC) 19-20.06.2014 27 / 30

M1-strength SM calculations in 94 Mo R. Schwengner et al., Phys. Rev. Lett. C88 (2013) KS, present SM <B(M1)> ( N 2 ) 0.1 0.08 0.06 0.04 0.02 94 + Mo - J=0i -6i, i=1,40 0 0 2 4 6 8 E γ (MeV) Model space: π(0f 5/2,1p 3/2,1p 1/2,0g 9/2 ) ν(0g 9/2,1d 5/2,0g 7/2 ) truncations of allowed p-h excitations SMII: Model space: π(1p 1/2,0g 9/2 ) ν(0g 9/2,1d 5/2,0g 7/2,1d 3/2,2s 1/2 ) 1p1h from νg 9/2 to the rest of shells ZLow energy M1 enhancement looks independent on model space & effective interaction Kamila Sieja (IPHC) 19-20.06.2014 28 / 30

γ-strength in SM calculations f 1 (10-9 MeV -3 ) 10 3 10 2 10 1 10 0 10-1 10-2 43 Sc 60 Fe 94 Mo f 1 (10-9 MeV -3 ) 10 3 10 2 10 1 10 0 10-1 10-2 94 Mo SM I SM II 0 2 4 6 8 10 12 14 16 E γ (MeV) 0 2 4 6 8 10 E γ (MeV) ZToo low SM level density in 43 Sc Open questions: EM character, multipolarity. role of E1 transitions Which nuclei? Kamila Sieja (IPHC) 19-20.06.2014 29 / 30

Summary Understanding of the mechanisms driving shell evolution (3N forces, tensor forces) allows for a better modelling all over the nuclear chart. Pseudo-SU(3) model predictions are in good agreement with SM diagonalization for N = 52, 54 nuclei. Consistent description of gamma-excitation M1/E1/E2 strength functions is necessary to explain low energy enhancement of radiation strength functions. The E1 calculations in sd pf gds model space are under way. Thanks to: E. Caurier, H. Naidja, F. Nowacki (IPHC Strasbourg) G. Martinez-Pinedo, J. Mendoza-Temis (TU Darmstadt) Kamila Sieja (IPHC) 19-20.06.2014 30 / 30