except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î

Similar documents
Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

AP Calculus AB AP Review

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

( ) ( ) 1 ( ) Algebra Cheat Sheet ( ) (, ) = ( ) + ( ) ( )( ) Basic Properties & Facts Arithmetic Operations. Properties of Inequalities. b a.

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

Mathematical Notation Math Calculus & Analytic Geometry I

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Example 3 Find the tangent line to the following function at.

Mathematical Notation Math Calculus & Analytic Geometry I

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Limit of a function:

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Thomas Whitham Sixth Form

a f(x)dx is divergent.

Calculus Summary Sheet

12.2 The Definite Integrals (5.2)

Riemann Integral Oct 31, such that

Crushed Notes on MATH132: Calculus

Multiplicative Versions of Infinitesimal Calculus

Topic 4 Fourier Series. Today

Important Facts You Need To Know/Review:

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

General properties of definite integrals

EXPONENTS AND LOGARITHMS

Approximate Integration

Accuplacer Elementary Algebra Study Guide

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

Area, Volume, Rotations, Newton s Method

Pre-Calculus - Chapter 3 Sections Notes

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

1.3 Continuous Functions and Riemann Sums

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x.

Interpolation. 1. What is interpolation?

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Numerical Integration

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

( ) dx ; f ( x ) is height and Δx is

EVALUATING DEFINITE INTEGRALS

Calculus Definitions, Theorems

Chapter 5. Integration

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

BC Calculus Path to a Five Problems

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Project 3: Using Identities to Rewrite Expressions

Harold s Calculus Notes Cheat Sheet 15 December 2015

Mathematical Notation Math Calculus for Business and Social Science

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Things I Should Know In Calculus Class

[Q. Booklet Number]

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

BC Calculus Review Sheet

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

1 Tangent Line Problem

Chapter 2. LOGARITHMS

Chapter Real Numbers

Graphing Review Part 3: Polynomials

Section 2.2. Matrix Multiplication

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

Simpson s 1/3 rd Rule of Integration

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Add Maths Formulae List: Form 4 (Update 18/9/08)

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

Chapter 7 Infinite Series

The Reimann Integral is a formal limit definition of a definite integral

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( )

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Approximations of Definite Integrals

Escher Degree of Non-periodic L-tilings by 2 Prototiles

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Math 3B Midterm Review

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Solutions to Problem Set 7

y udv uv y v du 7.1 INTEGRATION BY PARTS

Orthogonal functions - Function Approximation

Convergence rates of approximate sums of Riemann integrals

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

denominator, think trig! Memorize the following two formulas; you will use them often!

5.3. The Definite Integral. Limits of Riemann Sums

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Introduction to Matrix Algebra

lecture 16: Introduction to Least Squares Approximation

Transcription:

Limits Deiitios Preise Deiitio : We sy lim L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly lose to (o either sie o ) without lettig. Right h limit : lim + Æ Æ L. This hs the sme eiitio s the limit eept it requires >. Let h limit : lim Æ L. This hs the Limit t Iiity : We sy lim sme eiitio s the limit eept it requires egtive. <. Reltioship etwee the limit oesie limits lim L i lim lim L lim lim L + + Æ lim lim i lim + Assume lim lim Æ Æ g. limè lim. limè ± g lim ± lim g Æ. limè g lim lim g Æ L i we mke ( ) s lose to L s we wt y tkig lrge eough positive. There is similr eiitio or lim Æ eept we require lrge egtive. Iiite Limit : We sy lim Æ L i we mke ( ) ritrrily lrge ( positive) y tkig suiietly lose to (o either sie o ) without lettig. There is similr eiitio or lim Æ eept we mke ( ) ritrrily lrge Æ i lim Does Not Eist Properties oth eist is y umer the, 4. È lim Æ lim Í Æ g lim g Æ. limè lim È 6. limè lim L Æ provie g Æ lim 0 Note : sg( ) i > 0. lim e & lim e 0 Æ r Æ. liml & lim l Æ0 + Bsi Limit Evlutios t ± sg i < 0.. I r > 0 the lim r 0 r 4. I r > 0 is rel or egtive the lim 0. eve : lim Ʊ 6. o : lim & lim Æ 7. eve : lim L sg Ʊ + + + 8. o : lim L sg + + + 9. o : lim L sg Æ + + +

Cotiuous Futios I is otiuous t the Cotiuous Futios Compositio ( ) is otiuous t lim g the Æ ( ) lim lim g g Ftor Cel + 4 + 6 lim lim Æ Æ + 6 8 lim 4 Æ Rtiolize Numertor/Deomitor + lim lim Æ9 9 8 Æ 8 + 9 lim lim Æ9 Æ9 8 + + 9 + 8 6 08 Comie Rtiol Epressios Ê ˆ Ê ( + h) ˆ lim Á lim hæ0 h h hæ0 Ë + há ( + h) Ë Ê h ˆ lim lim hæ0 há ( h) hæ0 Ë + ( + h) Evlutio Tehiques L Hospitl s Rule lim Æ 0 I lim or lim Æ g 0 Æ g lim lim Æ g Æ g ± ± the, is umer, or Polyomils t Iiity q re polyomils. To ompute p( ) p lim Ʊ q o oth p( ) tor lrgest power o i q out q the ompute limit. 4 4 4 lim lim lim Æ Æ Æ ( ) Pieewise Futio Ï + i < lim g where g Ì Æ Ó i Compute two oe sie limits, lim g lim + 9 Æ Æ lim g lim 7 + + Æ Æ Oe sie limits re ieret so lim g Æ oes t eist. I the two oe sie limits h lim g woul hve eiste ee equl the Æ h the sme vlue. Some Cotiuous Futios Prtil list o otiuous utios the vlues o or whih they re otiuous.. Polyomils or ll. 7. os( ) si ( ) or ll.. Rtiol utio, eept or s tht give ivisio y zero. 8. t ( ) se( ) provie. ( o) or ll. p p p p L,,,,, L 4. ( eve) or ll 0. 9. ot. e or ll. ( ) s( ) provie 6. l or > 0. L, p, p,0, p, p, L Itermeite Vlue Theorem Suppose tht ( ) is otiuous o [, ] let M e y umer etwee ( ) The there eists umer suh tht < < ( ) M..

Derivtives Deiitio Nottio I y the the erivtive is eie to e ( + ). h h Æ0 lim h I y the ll o the ollowig re equivlet ottios or the erivtive. y y D I y ll o the ollowig re equivlet ottios or erivtive evlute t. y y D I y the,. m is the slope o the tget lie to y t the equtio o the tget lie t is y +. give y I ( ). ( ) Iterprettio o the Derivtive is the istteous rte o. hge o ( ) t.. I ( ) is the positio o ojet t time the is the veloity o the ojet t. Bsi Properties Formuls g re ieretile utios (the erivtive eists), re y rel umers,. ( ± g) ± g. g g+ g Prout Rule Ê ˆ g g 4. Á Quotiet Rule Ë g g Power Rule ( ( g )) g g This is the Chi Rule. ( ) 0 6. 7. ( ) ( si) ( os) os si ( t) se se set Commo Derivtives ( s) sot ( ot) s ( si ) ( os ) ( t ) + ( ) l ( ) ( e ) e ( l ), > 0 ( l ), 0 ( log ), > 0 l

Chi Rule Vrits The hi rule pplie to some speii utios.. ( È ) È. ( osè ) si È. ( e ) e 6. ( tè ) se È. ( l È ) 7. se [ ] se t 4. ( siè ) os È 8. ( t È ) +È ( ) [ ] [ ] Higher Orer Derivtives The Seo Derivtive is eote s The th Derivtive is eote s ( ) ( is eie s ) is eie s ( ), i.e. the erivtive o the, i.e. the erivtive o. irst erivtive, ( ( ) ) the () st erivtive, ( ) Impliit Dieretitio + y si y + y y here, so prouts/quotiets o y 9y Fi y i e. Rememer will use the prout/quotiet rule erivtives o y will use the hi rule. The trik is to ieretite s orml every time you ieretite y you tk o y (rom the hi rule). Ater ieretitig solve or y. e ( y ) e y yy ( y) y e y e y 9y 9 + + os + y + y + yy y y + i y 9y 9y e 9 os y 9 os y y y 9 9 Critil Poits is ritil poit o. ( ) 0 or. ( ) Iresig/Deresig Cove Up/Cove Dow oes t eist. provie either Iresig/Deresig > or ll i itervl I the. I 0 ( ) is iresig o the itervl I. < or ll i itervl I the. I 0 ( ) is eresig o the itervl I. or ll i itervl I the. I 0 ( ) is ostt o the itervl I.. 9y e y 9y y9e os ( y) Cove Up/Cove Dow. I > 0 or ll i itervl I the ( ) is ove up o the itervl I. < or ll i itervl I the. I 0 ( ) is ove ow o the itervl I. Iletio Poits is iletio poit o ovity hges t. i the

Asolute Etrem. is solute mimum o i ( ) or ll i the omi. is solute miimum o. i ( ) or ll i the omi. Fermt s Theorem hs reltive (or lol) etrem t I, the is ritil poit o. Etreme Vlue Theorem is otiuous o the lose itervl I [, ] the there eist umers so tht,.,,. ( ) is the s. m. i [, ],. is the s. mi. i [, ]. Fiig Asolute Etrem To i the solute etrem o the otiuous, use the utio ( ) o the itervl [ ] ollowig proess.. Fi ll ritil poits o ( ) i [, ].. Evlute ( ) t ll poits ou i Step.. Evlute ( ) ( ). 4. Ietiy the s. m. (lrgest utio vlue) the s. mi.(smllest utio vlue) rom the evlutios i Steps &. Etrem Reltive (lol) Etrem. is reltive (or lol) mimum o or ll er. ( ) i. is reltive (or lol) miimum o or ll er. ( ) i st Derivtive Test I is ritil poit o. rel. m. o ( ) i 0 the is > to the let o < 0 to the right o.. rel. mi. o ( ) i 0 < to the let o > 0to the right o. is. ot reltive etrem o ( ) i the sme sig o oth sies o Derivtive Test I Me Vlue Theorem,. is ritil poit o ( ) suh tht ( ) 0 the. is reltive mimum o ( ) i ( ) 0. is reltive miimum o ( ) i ( ) 0. my e reltive mimum, reltive miimum, or either i ( ) 0. Fiig Reltive Etrem /or Clssiy Critil Poits. Fi ll ritil poits o ( ).. Use the st erivtive test or the erivtive test o eh ritil poit. <. >. I ( ) is otiuous o the lose itervl [ ] ieretile o the ope itervl (, ) ( ) the there is umer < < suh tht ( ). Newto s Metho I is the th guess or the root/solutio o ( ) 0 the (+) st guess is provie ( ) eists. + ( ) ( )

Relte Rtes Sketh piture ietiy kow/ukow qutities. Write ow equtio reltig qutities ieretite with respet to t usig impliit ieretitio (i.e. o erivtive every time you ieretite utio o t). Plug i kow qutities solve or the ukow qutity. E. A oot ler is restig gist wll. The ottom is iitilly 0 t wy is eig pushe towrs the wll t 4 t/se. How st is the top movig ter se? E. Two people re 0 t prt whe oe strts wlkig orth. The gleq hges t 0.0 r/mi. At wht rte is the iste etwee them hgig whe q 0. r? is egtive euse is eresig. Usig Pythgore Theorem ieretitig, + y i + yy 0 Ater se we hve 0 7 so y 7 76. Plug i solve or y. 7 7( 4 ) + 76 y 0 i y t/se 4 76 4 We hve q 0.0 r/mi. wt to i. We use vrious trig s ut esiest is, seq i seq tqq 0 0 We kowq 0.0 so plug i q solve. se( 0.) t( 0.)( 0.0) 0 0. t/se Rememer to hve lultor i ris! Optimiztio Sketh piture i eee, write ow equtio to e optimize ostrit. Solve ostrit or oe o the two vriles plug ito irst equtio. Fi ritil poits o equtio i rge o vriles veriy tht they re mi/m s eee. E. We re elosig retgulr iel with E. Determie poit(s) o y + tht re 00 t o ee mteril oe sie o the losest to (0,). iel is uilig. Determie imesios tht will mimize the elose re. Mimize A y sujet to ostrit o + y 00. Solve ostrit or plug ito re. A y( 00y) 00y i 00y y Dieretite i ritil poit(s). A 004y i y By eriv. test this is rel. m. so is the swer we re ter. Filly, i. 00 0 The imesios re the 0. Miimize ( 0) ( y ) ostrit is + the y +. Solve ostrit or plug ito the utio. y y i + y + y y y+ Dieretite i ritil poit(s). y i y By the erivtive test this is rel. mi. so ll we ee to o is i vlue(s). i ± The poits re the (, ) (, ).

Deiite Itegrl: Suppose o [, ]. Divie [, ] with D hoose Itegrls Deiitios is otiuous ito suitervls o rom eh itervl. * i * The limâ ( i ) D. Æ i AtiDerivtive : A tierivtive o ( ) is utio, F( ), suh tht F. Ieiite Itegrl : F + where F( ) is tierivtive o ( ). Fumetl Theorem o Clulus is otiuous o [, ] the Vrits o Prt I : u g () t t is lso otiuous o [, ] () t t u u È g t t. () t t v v È v is otiuous o[, ], F( ) is u () t t u u v v F ) Prt I : I () Prt II : tierivtive o ( ) (i.e. F F. the ± ± ± ± g g g g 0 I g o the I 0 o the 0 Properties [ ] [ v ], is ostt, is ostt g () t t I m M o the m ( ) M ( ) + + k k+ + +, + e l + + l luu ul ( u) u+ u u u e + Commo Itegrls osuu si u+ siuu osu+ se uu t u+ seutuu seu+ suotuu su+ s uu ot u+ tuu l seu + seuu l seu+ t u + u u t u + + u u si u +

Str Itegrtio Tehiques Note tht t my shools ll ut the Sustitutio Rule te to e tught i Clulus II lss. u Sustitutio : The sustitutio u g will overt u g. For ieiite itegrls rop the limits o itegrtio. E. os u i u i u :: 8 i u i u Itegrtio y Prts : uv uv vu g ( g ) g ( u) u usig g 8 si( u) ( si( 8) si() ) 8 itegrl ompute u y ieretitig u ompute v usig v E. u v e i u ve e e + e e e + os os u u uv uv vu. Choose u v rom E. l v. u l v i u v ( ) l l l l l Prouts (some) Quotiets o Trig Futios m m For si os we hve the ollowig : For t se we hve the ollowig :. o. Strip sie out overt rest to osies usig si os, the use the sustitutio u os.. m o. Strip osie out overt rest to sies usig os si, the use the sustitutio u si.. m oth o. Use either. or. 4. m oth eve. Use oule gle /or hl gle ormuls to reue the itegrl ito orm tht e itegrte.. o. Strip tget set out overt the rest to sets usig t se, the use the sustitutio u se.. m eve. Strip sets out overt rest to tgets usig se + t, the use the sustitutio u t.. o m eve. Use either. or. 4. eve m o. Eh itegrl will e elt with ieretly. si si os os os si os Trig Formuls :, +, E. t se 4 ( se se ) tse 4 ( u ) uu ( u se ) 4 t se t se t se se se + 7 7 E. si os 4 si si si (si ) si os os os (os ) si os (u) u u4 u + u u ( os ) u u se + l os os +

Trig Sustitutios : I the itegrl otis the ollowig root use the give sustitutio ormul to overt ito itegrl ivolvig trig utios. i siq os q si q i seq t q se q + i tq se q + t q 6 E. 49 si q i osq q 4 4si 4os 4 9 q q os q Rell. Beuse we hve ieiite itegrl we ll ssume positive rop solute vlue rs. I we h eiite itegrl we ee to ompute q s remove solute vlue rs se o tht, Ï i 0 Ì Ó i < 0 I this se we hve 4 9 osq. Û ı 6 4 si q q si q 9 ( os ) ( os ) q q q s q otq + Use Right Trigle Trig to go k to s. From sustitutio we hve siq so, From this we see tht ot 49 q. So, 6 4 49 49 + Prtil Frtios : I itegrtig P where the egree o Q P is smller th the egree o Q( ). Ftor eomitor s ompletely s possile i the prtil rtio eompositio o the rtiol epressio. Itegrte the prtil rtio eompositio (P.F.D.). For eh tor i the eomitor we get term(s) i the eompositio orig to the ollowig tle. Ftor i Q( ) Term i P.F.D Ftor i Q + A + A+ B + + ( + ) k ( + + ) + + k Term i P.F.D A A Ak + + L+ + + + A + B A k + Bk + L+ + + + + k k 7+ ( )( + 4) E. 7+ 4 + 6 ( )( 4) + + + 4 + + 4 6 + 4 + 4 ( ) 4l + l + 4 + 8t Here is prtil rtio orm reomie. A ( + 4 + 4 + 4 7+ A B+ C + 4) + ( B+ C)( ) + Set umertors equl ollet like terms. 7 + A+ B + C B + 4AC Set oeiiets equl to get system solve to get ostts. A+ B 7 C B 4A C 0 A 4 B C 6 A lterte metho tht sometimes works to i ostts. Strt with settig umertors equl i 7 + A + 4 + B+ C. Chose ie vlues o plug i. previous emple : For emple i we get 0 A whih gives A 4. This wo t lwys work esily.

Applitios o Itegrls Net Are : ( ) represets the et re etwee the is with re ove is positive re elow is egtive. Are Betwee Curves : The geerl ormuls or the two mi ses or eh re, Èupper utio È lower utio & i right utio let utio y i A È È y A y I the urves iterset the the re o eh portio must e ou iiviully. Here re some skethes o ouple possile situtios ormuls or ouple o possile ses. A ( y) g( y) y + A g A g g Volumes o Revolutio : The two mi ormuls re V A V A( y) y. Here is some geerl iormtio out eh metho o omputig some emples. Rigs Cyliers A p (( outer rius) ( ier rius) ) A p ( rius)( with / height) Limits: /y o right/ot rig to /y o let/top rig Limits : /y o ier yl. to /y o outer yl., y, y,, Horz. Ais use g( ), A( ). Vert. Ais use g( y ), A( y ) y. Horz. Ais use g( y ), A( y ) y. Vert. Ais use g( ), A( ). E. Ais : y > 0 E. Ais : y 0 E. Ais : y > 0 E. Ais : y 0 outer rius : ier rius : g outer rius: + g ier rius: + rius : y with : ( y) g( y) rius : + y with : ( y) g( y) These re oly ew ses or horizotl is o rottio. I is o rottio is the is use the y 0 se with 0. For vertil is o rottio ( > 0 0) iterhge y to get pproprite ormuls.

Work : I ore o F moves ojet i, the work oe is W F Averge Futio Vlue : The verge vlue o ( ) o is vg Ar Legth Sure Are : Note tht this is ote Cl II topi. The three si ormuls re, L s SA p ys (rotte out is) SA p s (rotte out yis) where s is epeet upo the orm o the utio eig worke with s ollows. y ( ) s + i y, s + y i y, y y y () () s + t i t, y g t, t t t r s r + q i r q, q With sure re you my hve to sustitute i or the or y epeig o your hoie o s to mth the ieretil i the s. With prmetri polr you will lwys ee to sustitute. Improper Itegrl A improper itegrl is itegrl with oe or more iiite limits /or isotiuous itegrs. Itegrl is lle overget i the limit eists hs iite vlue iverget i the limit oes t eist or hs iiite vlue. This is typilly Cl II topi. Iiite Limit. lim t. lim tæ. + + tæ t q tæ provie BOTH itegrls re overget. Disotiuous Itegr t. Disot. t : lim. Disot. t : lim. Disotiuity t < < : + t tæ provie oth re overget. Compriso Test or Improper Itegrls : I g 0 o [, ) the,. I ov. the ov.. I ivg. the Useul t : I > 0 the For give itegrl ( ) ivie [, ] g p g overges i p > iverges or p. ivg. Approimtig Deiite Itegrls (must e eve or Simpso s Rule) eie D ito suitervls [, ], [, ],, [ ] 0 with 0, * * * Mipoit Rule : ªD È ( ) + ( ) + + ( ) the, * L, i i, i D ª È 0 + ++ + + + L D ª È 0 + 4 + + + 4 + + L is mipoit [ ] Trpezoi Rule : Simpso s Rule :