On the Spectra of Bipartite Directed Subgraphs of K 4

Similar documents
Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

CIT 596 Theory of Computation 1. Graphs and Digraphs

CS 491G Combinatorial Optimization Lecture Notes

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Logic, Set Theory and Computability [M. Coppenbarger]

Obstructions to chordal circular-arc graphs of small independence number

Compression of Palindromes and Regularity.

arxiv: v2 [math.co] 31 Oct 2016

Section 2.3. Matrix Inverses

Answers and Solutions to (Some Even Numbered) Suggested Exercises in Chapter 11 of Grimaldi s Discrete and Combinatorial Mathematics

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching

Lecture 8: Abstract Algebra

Lecture 11 Binary Decision Diagrams (BDDs)

Directed acyclic graphs with the unique dipath property

Section 4.4. Green s Theorem

Lecture 2: Cayley Graphs

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Maximum size of a minimum watching system and the graphs achieving the bound

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

Introduction to Olympiad Inequalities

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

arxiv: v1 [cs.dm] 24 Jul 2017

Lecture 4: Graph Theory and the Four-Color Theorem

SOME COPLANAR POINTS IN TETRAHEDRON

A Short Introduction to Self-similar Groups

Generalized Kronecker Product and Its Application

Arrow s Impossibility Theorem

Computing all-terminal reliability of stochastic networks with Binary Decision Diagrams

arxiv: v1 [cs.cg] 28 Apr 2009

The DOACROSS statement

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Separable discrete functions: recognition and sufficient conditions

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

The vertex leafage of chordal graphs

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

SEMI-EXCIRCLE OF QUADRILATERAL

Vidyalankar S.E. Sem. III [CMPN] Discrete Structures Prelim Question Paper Solution

Lecture 6: Coding theory

I 3 2 = I I 4 = 2A

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Nondeterministic Finite Automata

Implication Graphs and Logic Testing

Discrete Structures Lecture 11

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph

Eigenvectors and Eigenvalues

Arrow s Impossibility Theorem

QUADRATIC EQUATION. Contents

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

Subsequence Automata with Default Transitions

Factorising FACTORISING.

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

CIRCULAR COLOURING THE PLANE

Solutions to Problem Set #1

MCH T 111 Handout Triangle Review Page 1 of 3

If the numbering is a,b,c,d 1,2,3,4, then the matrix representation is as follows:

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Monochromatic Plane Matchings in Bicolored Point Set

The Word Problem in Quandles

Introduction to Graphical Models

A Graphical Characterization of Lattice Conditional Independence Models

On the existence of a cherry-picking sequence

Automata and Regular Languages

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Linear choosability of graphs

2.4 Theoretical Foundations

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

Minimal DFA. minimal DFA for L starting from any other

Logic Synthesis and Verification

Necessary and sufficient conditions for some two variable orthogonal designs in order 44

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA

First Midterm Examination

Greedoid polynomial, chip-firing, and G-parking function for directed graphs. Connections in Discrete Mathematics

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Anti-Monotonic Overlap-Graph Support Measures

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Total score: /100 points

Hyers-Ulam stability of Pielou logistic difference equation

Maximizing Maximal Angles for Plane Straight-Line Graphs

Section 2.1 Special Right Triangles

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures

Graph width-parameters and algorithms

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

Transcription:

On the Spetr of Biprtite Direte Sugrphs of K 4 R. C. Bunge, 1 S. I. El-Znti, 1, H. J. Fry, 1 K. S. Kruss, 2 D. P. Roerts, 3 C. A. Sullivn, 4 A. A. Unsiker, 5 N. E. Witt 6 1 Illinois Stte University, Norml, IL 61790 2 Alm College, Alm, MI 48801 3 Illinois Wesleyn University, Bloomington, IL 61701 4 Bowling Green Stte University, Bowling Green, OH 43403 5 Brighm Young University, Provo, UT 84602 6 Simeon Creer Aemy, Chigo, IL 60620 Astrt The omplete irete grph of orer n, enote K n, is the irete grph on n verties tht ontins the rs (u, v) n (v, u) for every pir of istint verties u n v. For given irete grph, D, the set of ll n for whih K n mits D-eomposition is lle the spetrum of D. In this pper, we fin the spetrum for eh iprtite sugrph of K 4 with 5 or fewer rs. 1 Introution One of the primry questions in the fiel of grph eompositions is Given grph G, whih omplete grphs mit G-eomposition? Answering this question for ll grphs of smll orer hs een the topi of vrious ppers. In prtiulr, this question ws nswere for grphs n uniform hypergrphs of smll orer in [3] n [5], respetively. In this pper we follow this line of inquiry to irete grphs y lssifying the spetr of iprtite irete grphs of orer t most 4, with up to 5 rs. If n re integers, we enote {, +1,..., } y [, ] (if >, then [, ] = ). Let N enote the set of nonnegtive integers n Z m the group of integers moulo m. Throughout this pper, we refer to irete grphs Reserh supporte y Ntionl Siene Fountion Grnt No. A1359300

s igrphs. For igrph, D, let V (D) n E(D) enote the vertex set of D n the r set of D, respetively. The orer n the size of igrph D re V (D) n E(D), respetively. Throughout this pper we will use the nmes for igrphs, isplye in Tles 1 n 2, foun in An Atls of Grphs [13] y Re n Wilson. Let H n D e igrphs suh tht D is sugrph of H. A D- eomposition of H is set = {D 1, D 2,..., D r } of pirwise ege-isjoint sugrphs of H eh of whih is isomorphi to D n suh tht E(H) = r i=1 E(D i). If D-eomposition of H exists, then we sy tht D eomposes H. The reverse orienttion of D is the igrph with vertex set V (D) n r set {(v, u): (u, v) E(D)}. Let D n H enote the reverse orienttions of D n H, respetively. We note tht the existene of D- eomposition of H neessrily implies the existene of D -eomposition of H. A D-eomposition of Kn is lso known s (Kn, D)-esign. The set of ll n for whih Kn mits D-eomposition is lle the spetrum of D. Sine Kn is its own reverse orienttion, we note tht the spetrum of D is equivlent to the spetrum of D. The neessry onitions for igrph D to eompose Kn inlue (A) V (D) n, (B) E(D) ivies n(n 1), n (C) g{outegree(v): v V (D)} n g{inegree(v): v V (D)} oth ivie n 1. There re 51 iprtite sugrphs of K 4 with no isolte verties. It ws shown in [6] tht 37 of these eompose K mx+1 ylilly (efine in Setion 2), where m is the numer of rs in the sugrph. Until now, the spetr for the mjority of these grphs h not een lssifie. This pper extens those results y fining the spetr for ll 42 iprtite sugrphs of K 4 with 5 rs or fewer. If D is sugrph of K 4 with m 5 rs, then y onition (B) the existene of (K n, D)-esign neessittes tht n 0 or 1 (mo m). Through series of lemms, we prove the following. Theorem 1. The spetr for the 42 iprtite sugrphs of K4 fewer rs re s isplye in Tle 3. with 5 or The spetr for ertin sugrphs (oth iprtite n non-iprtite) of K 4 hve lrey een stuie. When D is yli orienttion of K 3, then (K n, D)-esign is known s Menelsohn triple system. The spetrum for Menelsohn triple systems ws foun inepenently y Menelsohn [11] n Bermon [2].When D is trnsitive orienttion of K 3, then (K n, D)- esign is known s trnsitive triple system. The spetrum for trnsitive triple systems ws foun y Hung n Menelsohn [9]. In [8], Hrtmn n Menelsohn foun the spetr for ll remining simple onnete su- 2

grphs of K 3, whih inlue grphs D7, D10, D11, D13, D16, n D25 (see Tle 1). There re extly four orienttions of 4-yle. It ws shown in [15] tht if D is yli orienttion of 4-yle (i.e., D67), then (K n, D)- esign exists if n only if n 0 or 1 (mo 4) n n 4. The spetr for the remining three orienttions of 4-yle (i.e., D46, D59, D60) were foun in [7]. A irete pth on n verties, enote DP n, is the irete grph whose unerlying simple grph is pth on n verties suh tht every vertex tht is not lef in the unerlying grph hs oth inegree n outegree of one. In [12], neessry n suffiient onitions for eomposition of the omplete multi-igrph into irete pths of ritrrily presrie lengths were foun. In prtiulr, this hrterizes the spetr of D25 n D38. Here, we stte their result only for ege multipliity one n fixe pth length. Theorem 2. [12] Neessry n suffiient onitions for the existene of (K n, DP m+1 )-esign re m n 1 n n(n 1) 0 (mo m), unless (m, n) is either (4, 5) or (2, 3). A igrph is lle n ntiirete pth if its unerlying grph is pth, n it oes not mit irete pth of length 2 s sugrph. Let D e n ntiirete pth. Neessry n suffiient onitions for the existene of (K n, D)-esign were otine in [16]. Notie tht D7, D10, n D33 re ntiirete pths. Theorem 3. [16] Let AP m enote n ntiirete pth on m verties. A (Kn, AP m+1 )-esign exists if n only if the following onitions re stisfie: (1) m n 1, (2) n(n 1) 0 (mo m), (3) n or m is o. Let G e iprtite sugrph of the 2-fol unirete omplete grph on 4 verties. In [1] neessry n suffiient onitions were otine for the existene of G-eomposition of the 2-fol unirete omplete grph on n verties. Severl of these eompositions iretly trnslte to igrph eompositions of interest in this pper. In prtiulr, the spetr of D3, D4, D16, D27, D37, n D66 re otine from these results. 3

2 Grph lelings Let V (K n) = [0, n 1]. The length of n r (i, j) is j i if j > i, n it is n + j i otherwise. Note tht E(K n) onsists of n rs of length i for eh i [1, n 1]. Let D e sugrph of K n. By rotting D, we men pplying the permuttion i i + 1 to V (D) where the ition is one moulo n. Moreover in this se, if j N, then D + j is the igrph otine from D y suessively rotting D totl of j times. Note tht rotting n r oes not hnge its length. Also note tht D + j is isomorphi to D for every j N. A (K n, D)-esign is yli if rotting is n utomorphism of. Grph lelings were introue y Ros in [14] n provie mens of otining yli esigns for unirete grphs. In prtiulr, the wellknown greful leling ws efine in [14]. In 1985, Bloom n Hsu [4] extene the onept of greful leling to irete grphs. With the nottion pte to etter suit this pper, we present the following efinition from [4]. Let D e irete grph with m rs n t most m + 1 verties. Let f : V (D) [0, m] e n injetive funtion, n efine funtion f : E(D) [1, m] s follows: f((, )) = f() f(), if f() > f(), n f((, )) = m + 1 + f() f(), otherwise. We ll f irete ρ-leling of D if { f((, )): (, ) E(D)} = [1, m]. Thus, irete ρ-leling of D is n emeing of D in K m+1 suh tht there is extly one r in D of length i for eh i [1, m]. It ws shown in [10] tht for igrph D with size m n orer t most m + 1, yli (K m+1, D)-esign exists if n only if D mits irete ρ-leling. In orer to otin n infinite fmily of yli esigns, it is neessry to exten the notion of irete ρ-leling. In our se this is omplishe y restriting ourselves to iprtite igrphs n imposing n orer on the leling. Let D e iprtite irete grph with m rs n t most m + 1 verties. Let {A, B} e vertex iprtition of V (D). A irete ρ-leling f of D is orere if f() < f() for eh r with en verties A n B. An orere irete ρ-leling is lso lle irete ρ + -leling. The onnetion etween irete ρ + -lelings n yli igrph esigns is foun in result from [6]. Theorem 4. If D is iprtite irete grph with m rs tht mits irete ρ + -leling, then there exists yli (K mx+1, D)-esign for ll x Z +. Next we onsier n nlogue of 1-rottionl esigns for irete grphs. If we let V (K n) = [0, n 2] { }, then the length of n r (i, j), where {i, j}, is j i if j > i, n it is n 1 + j i otherwise. Furthermore, 4

we sy tht the length of n r of the form (i, ) is +, n the length of n r of the form (, j) is. Let D e sugrph of Kn. A (Kn, D)- esign is lle 1-rottionl irete esign if pplying the permuttion (0, 1, 2,..., n 2)( ) is n utomorphism of. Let D e irete grph with m rs n t most m verties. Let f : V (D) [0, m 1] { } e n injetive funtion n efine funtion f : E(D) [1, m 2] {+, } s follows: f() f() if f() > f(), m 1 + f() f() if f() < f(), f((, )) = + if f() =, if f() =. We ll f 1-rottionl irete ρ-leling of D if { f((, )): (, ) E(D)} = [1, m 2] {+, }. Thus, 1-rottionl irete ρ-leling of D is n emeing of D in K m suh tht there is extly one r in D of length i for eh i [1, m 2] {+, }. The following theorem formlizes this oservtion. Theorem 5. Let D e iprtite irete grph with m rs. There exists 1-rottionl (K m, D)-esign if n only if D mits 1-rottionl irete ρ-leling. 3 Min Results The 42 non-isomorphi iprtite sugrphs of K4 of size t most 5 re shown in Tles 1 n 2. These tles lso give key tht enotes lele opy for eh iprtite irete grph. For exmple, D11[,, ] refers to the grph with three verties lele,, n with two rs etween n n single r irete from to. Our generl metho for lssifying the spetrum for suh grph of size m is to rek into two ses: omplete grphs with mx + 1 verties n omplete grphs with mx verties. However, we first note the following negtive results for the suffiieny of the neessry onitions, whih n e esily verifie. Lemm 6. There oes not exist n (H, D)-esign for (H, D) {(K 4, D50), (K 5, D50), (K 4, D51), (K 6, D99)}. Let G n H e vertex-isjoint irete grphs. The join of G n H, enote G H, is efine to e the irete grph with vertex set V (G) V (H) n r set E(G) E(H) {(u, v), (v, u): u V (G), v V (H)}. We use the shorthn nottion t i=1 G i to enote G 1 G 2 G t, n when G i = Gj t = G for ll 1 i < j t, we use the nottion i=1 G. For exmple, K12 = 4 i=1 K 3. 5

Tle 1: Biprtite sugrphs of K 4 with 3 or fewer rs. 2 3 verties D3[, ] D4[, ] D7[,, ] D10[,, ] D11[,, ] D13[,, ] D25[,, ] D27[,,, ] D28[,,, ] D31[,,, ] D32[,,, ] 4 verties D33[,,, ] D36[,,, ] D37[,,, ] D38[,,, ] D39[,,, ] D40[,,, ] 6

Tle 2: Biprtite sugrphs of K 4 with 4 or 5 rs. D16[,, ] D41[,,, ] D44[,,, ] D46[,,, ] D50[,,, ] D51[,,, ] D52[,,, ] D54[,,, ] D56[,,, ] D59[,,, ] D60[,,, ] D62[,,, ] D63[,,, ] D64[,,, ] D66[,,, ] D67[,,, ] D70[,,, ] D77[,,, ] D84[,,, ] D86[,,, ] D91[,,, ] D92[,,, ] D99[,,, ] D100[,,, ] D104[,,, ] 7

Tle 3: The neessry n suffiient onitions for the given igrphs to eompose Kn. Dirph Conitions Referenes D3 n 1 [1] D4 n 1 [1] D7 n 1 (mo 2) [8], [16], [6] D10 n 1 (mo 2) [8], [16], [6] D11 n 0 or 1 (mo 3) [8], [6] D13 n 0 or 1 (mo 3) [8], [6] D16 n 0 or 1 (mo 4) [8], [6] D25 n = 1 or n 4 [8], [12] D27 n = 1 or n 4 [1] D28 n 1 (mo 3) [6] D31 n 0 or 1 (mo 3), n 3 [6], Lemm 12 D32 n 0 or 1 (mo 3), n 3 Lemms 8 n 13 D33 n 0 or 1 (mo 3), n 3 [16], [6] D36 n 0 or 1 (mo 3), n 3 [6], Lemm 12 D37 n 0 or 1 (mo 3), n = 1 or n 6 [1] D38 n 0 or 1 (mo 3), n 3 [12], [6] D39 n 0 or 1 (mo 3), n 3 Lemms 8 n 13 D40 n 1 (mo 3) [6] D41 n 0 or 1 (mo 4) [6], Lemm 14 D44 n 1 (mo 4) [6] D46 n 1 (mo 4) [7], [6] D50 n 0 or 1 (mo 4), n = 1 or n 8 Lemms 6, 9, n 15 D51 n 0 or 1 (mo 4), n 4 [6], Lemms 6 n 16 D52 n 0 or 1 (mo 4) Lemms 10 n 17 D54 n 0 or 1 (mo 4) [6], Lemm 18 D56 n 0 or 1 (mo 4) [6], Lemm 18 D59 n 0 or 1 (mo 4), n = 1 or n 8 [7] D60 n 0 or 1 (mo 4), n 5 [7] D62 n 0 or 1 (mo 4) [6], Lemm 14 D63 n 1 (mo 4) [6] D64 n 0 or 1 (mo 4) Lemms 10 n 17 D66 n 0 or 1 (mo 4) [6], [1] D67 n 0 or 1 (mo 4), n 4 [15] D70 n 0 or 1 (mo 5) [6], Lemm 19 D77 n 0 or 1 (mo 5) [6], Lemm 20 D84 n 0 or 1 (mo 5) [6], Lemm 21 D86 n 0 or 1 (mo 5) [6], Lemm 22 D91 n 0 or 1 (mo 5) [6], Lemm 19 D92 n 0 or 1 (mo 5) [6], Lemm 20 D99 n 0 or 1 (mo 5), n 6 Lemms 6, 11, n 23 D100 n 0 or 1 (mo 5) [6], Lemm 24 D104 n 0 or 1 (mo 5) [6], Lemm 21 8

3.1 Deompositions of K mx+1 Leling methos n e use to otin yli (K mx+1, D)-esigns for 31 of the 42 irete grphs. This is ue to the ft tht these grphs mit irete ρ + -lelings s shown in [6]. Theorem 7. [6] Let D e iprtite sugrph of K4 of size m, n let x e positive integer. If D oes not elong to the set {D25, D27, D32, D37, D39, D50, D52, D59, D60, D64, D99}, then there exists yli (Kmx+1, D)-esign. Next, we proee to the igrphs tht o not mit irete ρ + - leling. Throughout this setion we let the vertex set of Kmx+1 e [0, mx]. Furthermore, throughout the entirety of the pper let Ks,t hve vertex iprtition {A, B} where A = [0, s 1] n B = [s, s + t 1]. Lemm 8. For every integer x 1 there exists (K 3x+1, D)-esign for D {D32, D39}. Proof. Sine D39 is the reverse orienttion of D32, it suffies to show the existene of (K3x+1, D32)-esign. For x = 1, we hve the following (K4, D32)-esign: {D32[0, 3, 2, 1], D32[1, 2, 3, 0], D32[3, 2, 1, 0], D32[2, 3, 0, 1]}. For x > 1, we require the following (K 3,3, D32)-esign: {D32[0, 3, 4, 2], D32[1, 4, 5, 0], D32[2, 5, 3, 1], D32[4, 1, 0, 5], D32[5, 2, 1, 3], D32[3, 0, 2, 4]}. We write K3x+1 = K1 x i=1 K 3. On eh of the x opies of K1 K3, we ple (K4, D32)-esign. The remining rs form r-isjoint opies of K3,3, on eh of whih we ple (K3,3, D32)-esign. Lemm 9. For every integer x 2 there exists (K 4x+1, D50)-esign. Proof. For x = 2, onsier the igrph G = D50[0, 3, 5, 1] D50[0, 6, 4, 2]. It is esy to hek tht we hve irete ρ-leling of G, n thus (K 9, D50)-esign exists. For x = 3, onsier the irete grph H = D50[0, 6, 4, 1] D50[0, 4, 5, 2] D50[0, 5, 6, 3]. It is esy to hek tht we hve irete ρ-leling of H, n thus (K 13, D50)-esign exists. For x > 3, we require the following (K 4,4, D50)-esign: {D50[0, 5, 6, 4], D50[1, 6, 7, 5], D50[2, 7, 4, 6], D50[3, 4, 5, 7], D50[0, 6, 5, 7], D50[1, 7, 6, 4], D50[2, 4, 7, 5], D50[3, 5, 4, 6]}. 9

Cse 1: x = 2k for some integer k 2. We write K8k+1 = K1 k i=1 K 8. On eh of the k opies of K1 K8, we ple (K9, D50)-esign. The remining rs form r-isjoint opies of K8,8, eh of whih n e eompose into opies of K4,4. On eh of these opies of K4,4, we ple (K4,4, D50)-esign. Cse 2: x = 2k + 1 for some integer k 2. We write K 8k+5 = K 1 K 12 k 1 i=1 K 8. On the opy of K 1 K 12, we ple (K 13, D50)-esign. On eh of the k 1 opies of K 1 K 8, we ple (K 9, D50)-esign. The remining rs form r-isjoint opies of K 8,12 n K8,8, oth of whih n e eompose into opies of K4,4. On eh of these opies of K4,4, we ple (K4,4, D50)-esign. Lemm 10. For every integer x 1 there exists (K 4x+1, D)-esign for D {D52, D64}. Proof. Sine D64 is the reverse orienttion of D52, it suffies to show the existene of (K4x+1, D52)-esign. For x = 1, we hve the following (K5, D52)-esign: {D52[1, 0, 2, 3], D52[3, 4, 2, 1], D52[3, 1, 0, 4], D52[4, 1, 0, 2], D52[2, 4, 0, 3]}. For x > 1, we require the following (K 2,2, D52)-esign: {D52[0, 3, 2, 1], D52[1, 3, 2, 0]}. We write K4x+1 = K1 x i=1 K 4. On eh of the x opies of K1 K4, we ple (K5, D52)-esign. The remining rs form r-isjoint opies of K4,4, eh of whih n e eompose into opies of K2,2. On eh of these opies of K2,2, we ple (K2,2, D52)-esign. Lemm 11. For every integer x 2 there exists (K 5x+1, D99)-esign. Proof. For x = 2, we hve the following (K 11, D99)-esign: {D99[0, 1, 4, 7], D99[7, 3, 2, 6], D99[3, 0, 8, 5], D99[9, 5, 2, 4], D99[9, 8, 3, 6], D99[5, 10, 8, 3], D99[7, 8, 4, 1], D99[0, 2, 5, 1], D99[0, 6, 7, 5], D99[1, 3, 5, 2], D99[2, 10, 1, 6], D99[3, 4, 2, 5], D99[4, 6, 2, 8], D99[4, 9, 8, 1], D99[6, 7, 2, 9], D99[6, 9, 5, 3], D99[8, 0, 2, 7], D99[8, 10, 4, 0], D99[9, 0, 1, 10], D99[10, 4, 6, 1], D99[10, 7, 3, 5], D99[10, 9, 1, 7]}. For x = 3, onsier the igrph G = D99[0, 7, 2, 1] D99[0, 13, 8, 3] D99[0, 4, 5, 6]. It is esy to hek tht we hve irete ρ-leling of 10

G, n thus (K 16, D99)-esign exists. For x > 3, we require the following (K 5,10, D99)-esign: {D99[0, 5, 6, 2], D99[1, 6, 7, 3], D99[2, 7, 8, 4], D99[3, 8, 9, 0], D99[4, 9, 5, 1], D99[5, 3, 4, 14], D99[6, 4, 0, 10], D99[7, 0, 1, 11], D99[8, 1, 2, 12], D99[9, 2, 3, 13], D99[12, 0, 4, 8], D99[13, 1, 0, 9], D99[14, 2, 1, 5], D99[10, 3, 2, 6], D99[11, 4, 3, 7], D99[0, 14, 11, 1], D99[1, 10, 12, 2], D99[2, 11, 13, 3], D99[3, 12, 14, 4], D99[4, 13, 10, 0]}; n the rgument proees similrly s in the proof for Lemm 9. 3.2 Deompositions of K mx Neessry onition (A) implies tht there is no (K 3, D)-esign for ny igrph D {D28, D31, D32, D33, D36, D37, D38, D39, D40}. Furthermore, there is no (K 2, D27)-esign. Now, let D {D7, D10, D28, D40, D44, D63} n suppose D hs m rs. Then neessry onition (C) implies tht there is no (K mx, D)-esign for ny positive integer x. Throughout this setion we let V (K m) = [0, m 2] { }. Lemm 12. For every integer x 2 there exists (K 3x, D)-esign for D {D31, D36}. Proof. Sine D36 is the reverse orienttion of D31, it suffies to show the existene of (K 3x, D31)-esign. Let x 2 e n integer. The following is (K 3x, D31)-esign: {D31[0, 1,, 2], D31[0,, 1, 3]} {D31[0, 3 + 3(i 3), 4 + 3(i 3), 6 + 3(i 3)]: 3 i x}. Lemm 13. For every integer x 2 there exists (K 3x, D)-esign for D {D32, D39}. Proof. Sine D39 is the reverse orienttion of D32, it suffies to show the existene of (K 3x, D32)-esign. Let x 2 e n integer. The following is (K 3x, D32)-esign: {D32[0, 1,, 2]} {D32[0, 3 + 3(i 2), 4 + 3(i 2), 1]: 2 i x}. Lemm 14. For every integer x 1 there exists (K 4x, D)-esign for D {D41, D62}. 11

Proof. Sine D62 is the reverse orienttion of D41, it suffies to show the existene of (K 4x, D41)-esign. Let x 1 e n integer. The following is (K 4x, D41)-esign: {D41[0, 1, 2, ]} {D41[0, 1+4(i 1), 2+4(i 1), 4(i 1)]: 2 i x}. Lemm 15. For every integer x 2 there exists (K 4x, D50)-esign. Proof. Let x 2 e n integer. Cse 1: x = 2k for some integer k 1. The following is (K 8k, D50)- esign: {D50[0, 1, 2, ], D50[0, 6, 5, 4]} {D50[0, 1 + 8(i 1), 2 + 8(i 1), 8(i 1)]: 2 i x} {D50[0, 6 + 8(i 1), 5 + 8(i 1), 4 + 8(i 1)]: 2 i x}. Cse 2: x = 2k + 1 for some positive integer k 1. For k = 1, onsier the igrph G = D50[0, 7, 3, ] D50[0, 3, 5, 1] D50[0, 5, 7, 2]. It is esy to hek tht we hve 1-rottionl irete ρ-leling of G, n thus (K 12, D50)-esign exists. For k > 1, we write K 8k+4 = K 12 k 1 i=1 K 8. On the opy of K 12, we ple (K 12, D50)-esign. On eh of the k 1 opies of K 8, we ple (K 8, D50)-esign, whih is shown to exist in the proof of Cse 1. The remining rs form r-isjoint opies of K 8,12 n K 8,8, oth of whih n e eompose into opies of K 4,4. On eh of these opies of K4,4, we ple (K4,4, D50)-esign, whih is shown to exist in the proof for Lemm 9. Lemm 16. For every integer x 2 there exists (K 4x, D51)-esign. Proof. Let x 2 e n integer. The following is (K 4x, D51)-esign: {D51[0,, 1, 4], D51[0, 3, 2, ]} {D51[0, 6 + 4(i 3), 7 + 4(i 3), 2]: 3 i x}. Lemm 17. For every integer x 1 there exists (K 4x, D)-esign for D {D52, D64}. Proof. Sine D64 is the reverse orienttion of D52, it suffies to show the existene of (K4x, D52)-esign. For x = 1, onsier the igrph D52[0, 1,, 2]. It is esy to hek tht we hve 1-rottionl irete ρ- leling of D52, n thus (K4, D52)-esign exists. For x > 1, we write K 4x = x i=1 K 4. On eh of the x opies of K 4, we ple (K 4, D52)- esign. The remining rs form r-isjoint opies of K 4,4, eh of whih n e eompose into opies of K 2,2. On eh of these opies of K 2,2, we ple (K2,2, D52)-esign, whih is shown to exist in the proof for Lemm 10. 12

Lemm 18. For every integer x 1 there exists (K 4x, D)-esign for D {D54, D56}. Proof. Sine D56 is the reverse orienttion of D54, it suffies to show the existene of (K 4x, D54)-esign. Let x 1 e n integer. The following is (K 4x, D54)-esign: {D54[0,, 2, 1]} {D54[0, 4 + 4(i 2), 6 + 4(i 2), 1]: 2 i x}. Lemm 19. For every integer x 1 there exists (K 5x, D)-esign for D {D70, D91}. Proof. Sine D91 is the reverse orienttion of D70, it suffies to show the existene of (K 5x, D70)-esign. Let x 1 e n integer. The following is (K 5x, D70)-esign: {D70[0,, 2, 1]} {D70[0, 5(i 1), 2+5(i 1), 1+5(i 1)]: 2 i x}. Lemm 20. For every integer x 1 there exists (K 5x, D)-esign for D {D77, D92}. Proof. Sine D92 is the reverse orienttion of D77, it suffies to show the existene of (K 5x, D77)-esign. Let x 1 e n integer. The following is (K 5x, D77)-esign: {D77[0,, 3, 1]} {D77[0, 5(i 1), 3 + 5(i 1), 1]: 2 i x}. Lemm 21. For every integer x 1 there exists (K 5x, D)-esign for D {D84, D104}. Proof. Sine D104 is the reverse orienttion of D84, it suffies to show the existene of (K 5x, D84)-esign. Let x 1 e n integer. The following is (K 5x, D84)-esign: {D84[0,, 2, 1]} {D84[4 + 5(i 2), 0, 2, 5 + 5(i 2)]: 2 i x}. Lemm 22. For every integer x 1 there exists (K5x, D86)-esign. Proof. For x = 1, we hve the following (K5, D86)-esign: {D86[0, 1, 2, 3], D86[0, 3,, 2], D86[, 1, 0, 2], D86[, 3, 2, 1]}. For x > 1, we require the following (K5,5, D86)-esign: {D86[0, 5, 7, 4], D86[1, 6, 8, 0], D86[2, 7, 9, 1], D86[3, 8, 5, 2], D86[4, 9, 6, 3], D86[6, 2, 4, 5], D86[7, 3, 0, 6], D86[8, 4, 1, 7], D86[9, 0, 2, 8], D86[5, 1, 3, 9]}; n the rgument proees similrly s in the proof for Lemm 17. 13

Lemm 23. For every integer x 1 there exists (K 5x, D99)-esign. Proof. For x = 1, onsier the igrph D99[0, 2,, 1]. It is esy to hek tht we hve the 1-rottionl irete ρ-leling of D99, n thus (K 5, D99)-esign exists. For x = 2, We hve the following (K 10, D99)-esign: {D99[1, 0, 4, 5], D99[2, 0, 5, 6], D99[3, 0, 6, 4], D99[0, 7, 4, 1], D99[0, 8, 5, 2], D99[0, 9, 6, 3], D99[7, 4, 1, 5], D99[8, 5, 2, 6], D99[9, 6, 3, 4], D99[4, 8, 2, 7], D99[5, 9, 3, 8], D99[6, 7, 1, 9], D99[8, 1, 7, 5], D99[9, 2, 8, 6], D99[7, 3, 9, 4], D99[2, 1, 4, 9], D99[3, 2, 5, 7], D99[1, 3, 6, 8]}. For x > 2, we require (K 5,10, D99)-esign, whih is shown to exist in the proof for Lemm 11. Cse 1: x = 2k + 1 for some integer k 2. We write K 10k+5 = K 5 k i=1 K 10. On the opy of K 5, we ple (K 5, D9)- esign. On eh of the k opies of K 10, we ple (K 10, D99)-esign. The remining rs form r-isjoint opies of K 5,10 n K 10,10, whih n e eompose into opies of K 5,10. On eh of these opies of K 5,10, we ple (K 5,10, D99)-esign. Cse 2: x = 2k for some integer k 2. We write K 10k = k i=1 K 10. On eh of the k opies of K 10, we ple (K 10, D99)-esign. The remining rs form r-isjoint opies of K 10,10, eh of whih n e eompose into opies of K5,10. On eh of these opies of K5,10, we ple (K5,10, D99)-esign. Lemm 24. For every integer x 1 there exists (K 5x, D100)-esign. Proof. Let x 1 e n integer. The following is (K 5x, D100)-esign: {D100[0, 1, 2, ]} {D100[0, 1 + 5(i 1), 2 + 5(i 1), 2]: 2 i x}. Thus, we hve shown tht Theorem 1 hols. 4 Aknowlegments The uthors re grteful to Peter Ams for help in fining some of the smll esigns neee for this work. This reserh is supporte y grnt numer A1359300 from the Division of Mthemtil Sienes t the Ntionl Siene Fountion. This work ws one while ll ut the first, seon, n fifth uthors were prtiipnts in REU Site: Mthemtis Reserh Experiene for Pre-servie n for In-servie Tehers t Illinois Stte University. 14

Referenes [1] S. R. Allen, J. Bolt, R. C. Bunge, S. Burton, n S. I. El-Znti, On the Inex 2 Spetr of Biprtite Sugrphs of 2 K 4, Bull. Inst. Comin. Appl., to pper. [2] J. C. Bermon, An pplition of the solution of Kirkmn s shoolgirl prolem: the eomposition of the symmetri oriente omplete grph into 3-iruits, Disrete Mth. 8 (1974) 301 304. [3] J. C. Bermon n J. Shönheim, G-eomposition of K n, where G hs four verties or less, Disrete Mth. 19 (1977), 113 120. [4] G. S. Bloom n D. F. Hsu, On greful irete grphs, SIAM J. Algeri Disrete Methos 6 (1985), 519 536. [5] D. Brynt, S. Herke, B. Menhut, n W. Wnnsit, Deompositions of omplete 3-uniform hypergrphs into smll 3-uniform hypergrphs, Austrlsin J. of Comin. 60 (2014), 227 254. [6] R. C. Bunge, S. I. El-Znti, J. Klister, D. Roerts, n C. Ruell, On orere irete ρ-lelings of iprtite igrphs n yli igrph eompositions, J. Comin. Mth. Comin. Comput., to pper. [7] F. Hrry, W. Wllis, n K. Heinrih, Deompositions of omplete symmetri igrphs into the four oriente qurilterls, Comintoril Mthemtis, Pro. Internt. Conf. Comintoril Theory, Cnerr, 1977, in Leture Notes in Mth., 686 (es. D. A. Holton n J. Seerry), Springer-Verlg, 1978, pp. 165 173. [8] A. Hrtmn n E. Menelsohn, The Lst of the Triple Systems, Ars Comin. 22 (1986), 25 41. [9] S. H. Y. Hung n N. S. Menelsohn, Direte triple systems, J. Comintoril Theory Set. A 14 (1973), 310 318. [10] G. Kpln, A. Lev, n Y. Roitty, On grph leling prolems n regulr eompositions of omplete grphs, Ars Comin. 92 (2009), 225 243. [11] N. S. Menelsohn, A nturl generliztion of Steiner triple systems, Computers in numer theory, Pro. Si. Res. Counil Atls Sympos. No. 2, Oxfor, 1969, Aemi Press, Lonon (1971) 323 338. [12] M. Meszk n Z. Skupień, Deompositions of omplete multiigrph into non-hmiltonin pths, J. Grph Theory 51 (2006) 82 91. 15

[13] R. C. Re n R. J. Wilson, An Atls of Grphs, Oxfor University Press, Oxfor, 1998. [14] A. Ros, On ertin vlutions of the verties of grph, in: Théorie es grphes, journées interntionles étues, Rome 1966 (Duno, Pris, 1967) 349 355. [15] J. Shönheim, Prtition of the eges of the irete omplete grph into 4-yles, Disrete Mth. 11 (1975), 67 70. [16] T. W. Shyu n C. Lin, Isomorphi Antiirete Pth Deompositions of Complete Symmetri Grphs, Ars Comin. 61 (2001), 255 262. 16