The impact of metal ions on photoinduced electron-transfer. properties: four photochromic metal-organic frameworks

Similar documents
Synthesis of homochiral zeolitic imidazolate frameworks via solvent-assisted linker exchange for enantioselective sensing and separation

Eight Zn(II) coordination networks based on flexiable. 1,4-di(1H-imidazol-1-yl)butane and different dicarboxylates:

Electronic Supplementary Information

Supporting Information

Metal-Organic Frameworks Based on Rigid Ligands as Separator. Supporting Information

Supporting information. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb 2+ ion in aqueous solution

Supporting Information

A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile. organic solvents and quantitative monitor for acetonitrile vapour

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

Supporting Information. Pb 6 Ba 2 (BO 3 ) 5 X (X = Cl, Br): new borate halides with strong

Study of Proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature

highly sensitive luminescent sensing of alkylamines

Supporting Information for the manuscript. Metastable interwoven mesoporous metal-organic frameworks

School of Nuclear Science and Engineering, East China University of Technology,

Supplementary Information. A precise hexagonal octadecanuclear Ag macrocycle with

Electronic supplementary information. Strong CIE activity, multi-stimuli-responsive fluorescence and data

Interpenetrated metal-organic frameworks of self-catenated four-connected mok nets

Electronic Supporting Information for

An unprecedented 2D 3D metal-organic polyrotaxane. framework constructed from cadmium and flexible star-like

High-Connected Mesoporous Metal Organic Framework

Supporting Information

A ratiometric luminescent sensing of Ag + ion via in situ formation of coordination polymers

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

Fig. S2 XRPD patterns of 1 3.

Supplementary material. Novel zinc(ii) metal-organic framework with diamond-like. structure: synthesis, study of thermal robustness and gas

New Journal of Chemistry Electronic Supplementary Information

Supporting Information

A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide

Electronic Supplementary Information

A new tetrazolate zeolite-like framework for highly selective CO 2 /CH 4 and CO 2 /N 2 separation

A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

Supporting Information

Stereocontrolled Self-Assembly and Photochromic Transformation of

Supporting information

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Supporting Information

Electronic Supplementary Information (ESI)

SUPPORTING INFORMATION

Benzene Absorption in a Protuberant-Grid-Type Zinc(II) Organic Framework Triggered by the Migration of Guest Water Molecules

All materials and reagents were obtained commercially and used without further

Probing Hydrogen Bond Energies by Mass Spectrometry

Supporting Information

Phosphonium Salt & ZnX 2 -PPh 3 Integrated Hierarchical POPs: Tailorable Synthesis and Highly Efficient Cooperative Catalysis in CO 2 Utilization

Ethers in a Porous Metal-Organic Framework

Morphology-Selective Synthesis of Cu(NO3)2 2.5H2O. Micro/Nanostructures Achieved by Rational Manipulation

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of

Supplementary Information

Supplementary Information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Supporting Information

Redox-Responsive Complexation between a. Pillar[5]arene with Mono ethylene oxide Substituents. and Paraquat

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Supporting Information

Electronic Supporting Information. for:

Electronic Supplementary Information

Supporting Information

Supporting Information

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Supporting Information

Ternary gradient metal-organic frameworks

Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution

Stereochemistry of Molecules in Crystals (part 1, 2)

Supplementary Material

the multiple helices

Supporting Information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Tetrahedral Structure and Luminescence Properties of Bi-Metallic Pt 1 Ag 28 (SR) 18 (PPh 3 ) 4 Nanocluster

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets

Hollowing Out MOFs: Hierarchical Micro- and Mesoporous MOFs with Tailorable Porosity via Selective Acid Etching

N, S-Containing MOF Derived Dual-Doped Mesoporous Carbon as Highly. Effective Oxygen Reduction Reaction Electrocatalyst

Supporting Information

Synthesis of two copper clusters and their catalysis towards the oxidation of benzene

Reactive fluorescent dye functionalized cotton fabric as a Magic Cloth for selective sensing and reversible separation of Cd 2+ in water

Supporting Information. Crystal structures, magnetic and electrochemical properties of. coordination polymers based on the

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Supporting Information

Synthesis and Structure of the Cadmium (II) Complex: [Cd(C 5 H 5 N) 2 (S 2 CO-n-C 4 H 9 ) 2 ]

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented

A Novel Detection Technique of Hydrazine Hydrate: Modality Change of Hydrogen-Bonding Induced Rapid and Ultrasensitive Colorimetric Assay

Supporting Information for

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for

Photoinduced Guest Transformation Promotes Translocation of Guest from Hydroxypropyl-β-Cyclodextrin to Cucurbit[7]uril

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science,

Supporting information for Template-directed proton conduction pathway in a coordination framework

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information

A 3.6 nm Ti52-Oxo Nanocluster with Precise Atomic Structure

Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks

An acid-stable hexaphosphate ester-based metal-organic. framework and its polymer composite as proton exchange. membrane

Electronic Supplementary Information

Local Deprotonation Enables Cation Exchange, Porosity. Modulation and Tunable Adsorption Selectivity in a. Metal-Organic Framework

Supporting Information

Electronic Supporting Information

Microporous Metal-Organic Frameworks built from Rigid Tetrahedral Tetrakis(4-tetrazolylphenyl)silane Connectors

Supporting Information. A novel microporous metal-organic framework exhibiting high acetylene and methane storage capacities

Transcription:

Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2018 Supporting Information The impact of metal ions on photoinduced electron-transfer properties: four photochromic metal-organic frameworks based on a naphthalene diimide chromophore Hui-Ling Xu, a Xiao-Shan Zeng, a Jie Li a, Yu-Ci Xu, a Hai-Jiang Qiu, a and Dong- Rong Xiao* ab a College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. E-mail: xiaodr98@swu.edu.cn b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China Table S1 Selected bond lengths (Å) and angles ( ) for 1-4. Compound 1 Zn(1)-O(3)#1 2.030(3) O(3)#2-Zn(1)-O(3)#1 87.3(2) Zn(1)-O(3)#2 2.030(3) O(3)#1-Zn(1)-O(6)#3 158.11(13) Zn(1)-O(6)#3 2.034(3) O(3)#2-Zn(1)-O(6)#3 87.44(13) Zn(1)-O(6) 2.034(3) O(3)#1-Zn(1)-O(6) 87.44(13) Zn(1)-O(7) 1.950(4) O(3)#2-Zn(1)-O(6) 158.11(13) Zn(2)-O(4)#1 2.049(2) O(6)-Zn(1)-O(6)#3 89.60(17) Zn(2)-O(4)#2 2.049(2) O(7)-Zn(1)-O(3)#2 101.42(13) Zn(2)-O(5) 2.014(3) O(7)-Zn(1)-O(3)#1 101.42(13) Zn(2)-O(5)#3 2.013(3) O(7)-Zn(1)-O(6) 100.45(12) Zn(2)-O(8) 1.946(4) O(7)-Zn(1)-O(6)#3 100.45(12) O(4)#1-Zn(2)-O(4)#2 90.11(15) O(5)-Zn(2)-O(4)#2 158.59(13) O(5)#3-Zn(2)-O(4)#2 87.55(12) O(5)#3-Zn(2)-O(4)#1 158.59(13)

O(5)-Zn(2)-O(4)#1 87.55(12) O(5)#3-Zn(2)-O(5) 86.9(2) O(8)-Zn(2)-O(4)#1 100.23(12) O(8)-Zn(2)-O(4)#2 100.23(12) O(8)-Zn(2)-O(5)#3 101.12(13) O(8)-Zn(2)-O(5) 101.12(13) Compound 2 Cd(1)-O(5) 2.231(2) O(5)-Cd(1)-O(5)#1 109.31(13) Cd(1)-O(5)#1 2.231(2) O(5)-Cd(1)-O(7) 142.09(8) Cd(1)-O(7) 2.384(2) O(5)#1-Cd(1)-O(7) 88.99(10) Cd(1)-O(7)#1 2.384(2) O(5)#1-Cd(1)-O(7)#1 142.09(8) Cd(1)-O(8) 2.376(2) O(5)-Cd(1)-O(7)#1 88.98(10) Cd(1)-O(8)#1 2.376(2) O(5)-Cd(1)-O(8)#1 120.53(8) O(5)#1-Cd(1)-O(8)#1 87.25(8) O(5)#1-Cd(1)-O(8) 120.53(8) O(5)-Cd(1)-O(8) 87.25(8) O(7)#1-Cd(1)-O(7) 96.38(15) O(8)-Cd(1)-O(7) 55.13(8) O(8)#1-Cd(1)-O(7) 92.38(8) O(8)-Cd(1)-O(7)#1 92.38(8) O(8)#1-Cd(1)-O(7)#1 55.13(8) O(8)-Cd(1)-O(8)#1 133.13(12) Compound 3 Ca(1)-O(2) 2.418(2) O(2)-Ca(1)-Cl(1) 84.38(6) Ca(1)-O(3)#2 2.357(3) O(3)#2-Ca(1)-Cl(1) 165.06(9) Ca(1)-O(9)#3 2.330(2) O(3)#2-Ca(1)-O(2) 82.95(9) Ca(1)-O(12)#1 2.331(2) O(9)#3-Ca(1)-Cl(1) 87.84(6) Ca(1)-O(15) 2.268(3) O(9)#3-Ca(1)-O(2) 168.13(8) Ca(1)-Cl(1) 2.7708(11) O(9)#3-Ca(1)-O(3)#2 105.86(10) Ca(2)-O(4)#4 2.300(3) O(9)#3-Ca(1)-O(12)#1 74.86(8) Ca(2)-O(9)#5 2.300(3) O(12)#1-Ca(1)-Cl(1) 97.09(7) Ca(2)-O(10)#5 2.455(2) O(12)#1-Ca(1)-O(2) 114.97(9) Ca(2)-O(11) 2.436(2) O(12)#1-Ca(1)-O(3)#2 81.21(10) Ca(2)-O(12) 2.561(2) O(15)-Ca(1)-Cl(1) 95.46(10) Ca(2)-O(13) 2.339(3) O(15)-Ca(1)-O(2) 85.48(11) Ca(2)-O(14) 2.280(3) O(15)-Ca(1)-O(3)#2 91.40(13) O(4)#4-Ca(3)-O(12) 84.63(11) O(15)-Ca(1)-O(9)#3 86.34(10) O(9)#5-Ca(3)-O(12) 67.82(7) O(15)-Ca(1)-O(12)#1 156.90(11)

O(10)#5-Ca(3)-O(12) 119.71(8) O(4)#4-Ca(2)-O(9)#5 86.91(10) O(11)-Ca(3)-O(10)#5 171.38(9) O(4)#4-Ca(2)-O(10)#5 96.70(10) O(13)-Ca(3)-O(9)#5 83.82(10) O(4)#4-Ca(2)-O(11) 86.85(10) O(13)-Ca(3)-O(11) 92.80(11) O(4)#4-Ca(2)-O(12) 84.52(9) O(14)-Ca(3)-O(4)#4 97.53(16) O(4)#4-Ca(2)-O(13) 169.10(11) O(14)-Ca(3)-O(10)#5 92.35(13) O(9)#5-Ca(2)-O(12) 67.79(7) O(10)#5-Ca(2)-O(9)#5 52.23(7) O(10)#5-Ca(2)-O(12) 119.73(7) O(11)-Ca(2)-O(9)#5 120.39(7) O(11)-Ca(2)-O(10)#5 171.35(8) O(11)-Ca(2)-O(12) 52.61(7) O(13)-Ca(2)-O(9)#5 83.83(9) O(13)-Ca(2)-O(10)#5 82.15(10) O(13)-Ca(2)-O(11) 92.86(10) O(13)-Ca(2)-O(12) 86.65(10) O(14)-Ca(2)-O(4)#4 97.46(14) O(14)-Ca(2)-O(9)#5 144.63(11) O(14)-Ca(2)-O(10)#5 92.42(11) O(14)-Ca(2)-O(11) 94.94(11) O(14)-Ca(2)-O(12) 147.45(11) O(14)-Ca(2)-O(13) 93.42(15) Compound 4 Ba(1)-O(1)#1 2.727(7) O(1)#1-Ba(1)-O(2)#1 47.63(19) Ba(1)-O(2)#1 2.807(6) O(1)#1-Ba(1)-O(23)#2 147.2(2) Ba(1)-O(3) 2.714(7) O(1)#1-Ba(1)-O(24)#2 132.87(19) Ba(1)-O(22)#2 2.672(7) O(1)#1-Ba(1)-O(25) 69.8(4) Ba(1)-O(23)#3 2.765(7) O(1)#1-Ba(1)-O(26) 111.6(2) Ba(1)-O(24)#3 2.847(7) O(1)#1-Ba(2)-O(27)#3 72.5(2) Ba(1)-O(25) 2.737(18) O(2)#1-Ba(1)-O(24)#2 172.1(2) Ba(1)-O(26) 2.897(8) O(2)#1-Ba(1)-O(26) 66.8(2) Ba(1)-O(27)#4 2.845(8) O(2)#1-Ba(1)-O(27)#3 119.8(2) Ba(2)-O(2)#1 2.683(7) O(3)-Ba(1)-O(1)#1 108.16(19) Ba(2)-O(3) 2.807(7) O(3)-Ba(1)-O(2)#1 75.5(2) Ba(2)-O(4) 2.829(9) O(3)-Ba(1)-O(23)#2 103.4(2) Ba(2)-O(21)#5 2.795(9) O(3)-Ba(1)-O(24)#2 98.0(2) Ba(2)-O(22)#5 2.745(6) O(3)-Ba(1)-O(25) 139.0(4) Ba(2)-O(24)#2 2.694(6) O(3)-Ba(1)-O(26) 65.1(2) Ba(2)-O(26) 2.884(7) O(3)-Ba(1)-O(27)#3 139.4(2)

Ba(2)-O(27) 2.874(8) O(22)#4-Ba(1)-O(1)#1 79.8(2) Ba(2)-O(28) 2.876(9) O(22)#4-Ba(1)-O(2)#1 100.60(19) Ba(3)-O(9)#7 2.731(10) O(22)#4-Ba(1)-O(3) 70.7(2) Ba(3)-O(10)#7 2.888(10) O(22)#4-Ba(1)-O(23)#2 119.6(2) Ba(3)-O(11) 2.716(8) O(22)#4-Ba(1)-O(24)#2 72.72(18) Ba(3)-O(14) 2.685(8) O(22)#4-Ba(1)-O(25) 142.7(4) Ba(3)-O(15)#6 2.897(11) O(22)#4-Ba(1)-O(26) 135.7(2) Ba(3)-O(16)#6 2.753(10) O(22)#4-Ba(1)-O(27)#3 69.6(2) Ba(3)-O(22)#29 2.905(11) O(23)#2-Ba(1)-O(2)#1 137.3(2) Ba(3)-O(31)#6 2.861(12) O(23)#2-Ba(1)-O(24)#2 47.98(19) Ba(4)-O(10)#7 2.666(8) O(23)#2-Ba(1)-O(26) 74.2(2) Ba(4)-O(11) 2.824(11) O(23)#2-Ba(1)-O(27)#3 89.2(2) Ba(4)-O(12) 2.850(11) O(24)#2-Ba(1)-O(26) 114.9(2) Ba(4)-O(13)#7 2.795(10) O(25)-Ba(1)-O(2)#1 74.7(4) Ba(4)-O(14)#7 2.801(10) O(25)-Ba(1)-O(23)#2 80.7(4) Ba(4)-O(15) 2.715(9) O(25)-Ba(1)-O(24)#2 113.1(4) Ba(4)-O(29) 2.969(12) O(25)-Ba(1)-O(26) 77.4(4) Ba(4)-O(30) 2.860(11) O(25)-Ba(1)-O(27)#3 80.6(4) Ba(4)-O(31) 2.887(14) O(27)#3-Ba(1)-O(24)#2 62.4(2) O(27)#3-Ba(1)-O(26) 154.3(2) O(2)#1-Ba(2)-O(3) 76.0(2) O(2)#1-Ba(2)-O(4) 122.0(2) O(2)#1-Ba(2)-O(21)#5 82.2(3) O(2)#1-Ba(2)-O(22)#5 90.4(2) O(2)#1-Ba(2)-O(24)#4 69.0(2) O(2)#1-Ba(2)-O(26) 68.5(2) O(2)#1-Ba(2)-O(27) 131.8(2) O(2)#1-Ba(2)-O(28) 152.5(3) O(3)-Ba(2)-O(4) 46.6(2) O(3)-Ba(2)-O(26) 64.2(2) O(3)-Ba(2)-O(27) 112.4(2) O(3)-Ba(2)-O(28) 121.1(2) O(4)-Ba(2)-O(26) 78.1(3) O(4)-Ba(2)-O(27) 85.3(3) O(4)-Ba(2)-O(28) 75.6(2) O(21)#5-Ba(2)-O(3) 138.2(2) O(21)#5-Ba(2)-O(4) 132.8(3) O(21)#5-Ba(2)-O(26) 74.8(2) O(21)#5-Ba(2)-O(27) 108.8(2) O(21)#5-Ba(2)-O(28) 70.9(3) O(22)#5-Ba(2)-O(3) 162.07(19)

O(22)#5-Ba(2)-O(4) 147.4(2) O(22)#5-Ba(2)-O(21)#5 48.3(2) O(22)#5-Ba(2)-O(26) 121.9(2) O(22)#5-Ba(2)-O(27) 68.2(2) O(22)#5-Ba(2)-O(28) 76.1(2) O(24)#4-Ba(2)-O(3) 89.98(19) O(24)#4-Ba(2)-O(4) 111.9(3) O(24)#5-Ba(2)-O(21)#5 114.8(2) O(24)#5-Ba(2)-O(22)#5 74.0(2) O(24)#5-Ba(2)-O(26) 134.3(2) O(24)#5-Ba(2)-O(27) 63.8(2) O(24)#5-Ba(2)-O(28) 127.4(3) O(27)-Ba(2)-O(26) 159.2(3) O(27)-Ba(2)-O(28) 65.2(3) O(28)-Ba(2)-O(26) 98.2(3) O(9)#7-Ba(3)-O(10)#7 47.9(3) O(9)#7-Ba(3)-O(15)#6 132.4(3) O(9)#7-Ba(3)-O(16)#6 150.1(4) O(9)#7-Ba(3)-O(29) 112.1(3) O(9)#7-Ba(3)-O(31)#6 72.0(3) O(10)#7-Ba(3)-O(15)#6 173.6(2) O(10)#7-Ba(3)-O(29) 67.7(3) O(11)-Ba(3)-O(9)#7 108.8(3) O(11)-Ba(3)-O(10)#7 75.8(3) O(11)-Ba(3)-O(16)#6 100.4(3) O(11)-Ba(3)-O(29) 67.0(3) O(11)-Ba(3)-O(31)#6 139.3(4) O(14)-Ba(3)-O(9)#7 80.0(3) O(14)-Ba(3)-O(10)#7 99.6(3) O(14)-Ba(3)-O(11) 69.1(3) O(14)-Ba(3)-O(15)#6 74.8(3) O(14)-Ba(3)-O(16)#6 117.9(3) O(14)-Ba(3)-O(29) 136.1(3) O(14)-Ba(3)-O(31)#6 71.1(4) O(15)#6-Ba(3)-O(29) 114.1(3) O(16)#6-Ba(3)-O(15)#6 45.6(3) O(16)#6-Ba(3)-O(10)#7 138.5(3) O(16)#6-Ba(3)-O(29) 72.9(4) O(16)#6-Ba(3)-O(31)#6 90.6(4) O(31)#6-Ba(3)-O(10)#7 119.6(3) O(31)#6-Ba(3)-O(15)#6 61.9(3) O(31)#6-Ba(3)-O(29) 152.4(4) O(10)#7-Ba(4)-O(11) 77.7(3) O(10)#7-Ba(4)-O(12) 123.0(3) O(10)#7-Ba(4)-O(13)#7 81.4(4) O(10)#7-Ba(4)-O(14)#7 88.1(3) O(10)#7-Ba(4)-O(15) 68.9(3) O(10)#7-Ba(4)-O(29) 69.6(3) O(10)#7-Ba(4)-O(30) 154.0(3) O(10)#7-Ba(4)-O(31) 131.0(3) O(11)-Ba(4)-O(12) 46.0(3) O(11)-Ba(4)-O(29) 64.8(3) O(11)-Ba(4)-O(30) 119.9(3) O(11)-Ba(4)-O(31) 112.2(3) O(12)-Ba(4)-O(29) 77.7(3) O(12)-Ba(4)-O(30) 74.6(3) O(12)-Ba(4)-O(31) 86.0(3) O(13)#7-Ba(4)-O(11) 139.1(3) O(13)#7-Ba(4)-O(12) 133.0(4) O(13)#7-Ba(4)-O(14)#7 46.8(3)

O(13)#7-Ba(4)-O(29) 75.1(3) O(13)#7-Ba(4)-O(30) 72.9(4) O(13)#7-Ba(4)-O(31) 108.0(4) O(14)#7-Ba(4)-O(11) 162.0(2) O(14)#7-Ba(4)-O(12) 148.8(3) O(14)#7-Ba(4)-O(29) 120.6(3) O(14)#7-Ba(4)-O(30) 77.3(3) O(14)#7-Ba(4)-O(31) 69.1(3) O(15)-Ba(4)-O(11) 88.5(3) O(15)-Ba(4)-O(12) 110.5(3) O(15)-Ba(4)-O(13)#7 116.0(3) O(15)-Ba(4)-O(14)#7 75.9(3) O(15)-Ba(4)-O(29) 134.4(3) O(15)-Ba(4)-O(30) 126.3(4) O(15)-Ba(4)-O(31) 63.8(3) Symmetry transformations used to generate equivalent atoms: for 1: #1-1/2+x, 3/2-y, 1-z. #2-1/2+x, 3/2-y, -1/2+z #3 +x, +y, 1/2-z #4 1/2+x, 3/2-y, 1-z #5 1-x, 1-y, 1-z; for 2: #1 1-x, +y, 1/2-z. #2 3/2-x, 3/2-y, 3/2-z #3 2-x, 1-y, 1-z; for 3: #1 1-x, 2-y, -z. #2 1-x,3-y,-1-z #3 -x, 2-y, -z #4 +x, -1+y, 1+z #5 1+x, +y, +z #6 +x, 1+y, -1+z #7-1+x, +y, +z; for 4: #1 1-x, 1/2+y, 3/2-z. #2 +x, +y, 1+z #3 1-x, -1/2+y, 1/2-z #4 1-x, -1/2+y, 3/2-z #5 1-x, 1/2+y, 1/2-z #6 -x, - 1/2+y, 1/2-z #7 -x, 1/2+y, 1/2-z. Fig. S1 Coordination environment of the Zn(II) atoms in 1. (Symmetry codes: #1-1/2+x, 3/2-y, 1-z; #2-1/2+x, 3/2-y, -1/2+z; #3 +x, +y, 1/2-z; #5 1-x, 1-y, 1-z).

Fig. S2 (a) Coordination environment of the Cd(II) atoms in 2. (with hydrogen atoms and free DMF omitted for clarity) (Symmetry codes: #1 1-x, +y, 1/2-z; #2 3/2-x, 3/2-y, 3/2-z; #3 2-x, 1-y, 1-z). (b) View of a single 3D framework in 2. Fig. S3 Coordination environment of the Ca(II) atoms in 3. (Symmetry codes: #1 1-x, 2-y, -z. #2 1-x,3-y,-1-z #3 -x, 2-y, -z #4 +x, -1+y, 1+z #5 1+x, +y, +z).

Figure S4 View of the 2D 3D interdigitated array of 3. Fig. S5 (a) Coordination environment of the Ba(II) atoms in 4. (Symmetry codes: #1 1- x, 1/2+y, 3/2-z. #2 +x, +y, 1+z #3 1-x, -1/2+y, 1/2-z #4 1-x, -1/2+y, 3/2-z #5 1-x, 1/2+y, 1/2-z #6 -x, -1/2+y, 1/2-z #7 -x, 1/2+y, 1/2-z). Scheme S1 Coordination modes of the BINDI ligand in compounds 1 4.

Fig. S6 The semi-quantitative ESR spectra of compounds 1-4 before photoirradiation. Fig. S7 The coloration and decoloration process of 1 from photographic images

Fig. S8 The coloration and decoloration process of 2 from photographic images Fig. S9 The coloration and decoloration process of 3 from photographic images Fig. S10 The fluorescence responses of the irradiated samples of 1 (a), 2(b), 3(c) upon the addition of sodium nitrite solution.

Fig. S11 The photoluminescence spectra for 1-4 before and after colour change. Fig. S12 Solid state first order rate plot of coloration: 3 (a), 4 (b). For 3, the photochemical reaction can be separated into two stages. Firstly, it exhibits a rate constant with k obs = 7.9 10 3 s -1. The reaction rate constant decreases as time goes on, showing k obs = 2.5 10 3 s -1, at the second step. For 4, the recation can also be separated into two stages. The reaction rate constant is 4.6 10 3 s 1 and 1.5 10 3 s 1 respectively due to its poor photosensitivity.

Fig. S13 Reversible solvent color change of 3 (a) and 4 (b). Fig. S14 Solid state UV-vis spectra of 3 (a) and 4 (b) soaked in different solvents

Fig. S15 Gas adsorptio isotherms of guest-free 1 (a) N 2 at 77.35 K, 1 (b) CO 2 at 273 K, 2 (a) CO 2 at 273 K, 4 (c) CO 2 at 273 K. The desolvated 1, 2, 4 shows CO 2 sorption with Langmuir surface area of ~ 20.442 m 2 g -1, ~ 117.012 m 2 g -1, ~ 104.521 m 2 g -1. The activated 1 exhibits N 2 sorption with Langmuir surface area of ~ 23.154 m 2 g -1. Confronted with these disappointing results, we think it may result from the traditional activation. In other words, the traditional thermal evacuation of solvent instead causes the collapse of interparticle micropores, which prevent micropores accessible to gas molecules. 1 1. A. P. Nelson, O. K. Farha, K. L. Mulfort and J. T. Hupp, J. Am. Chem. Soc., 2009, 131, 458.

Fig. S16 The PXRD patterns for 1-2. ((a): as-synthesized samples, (b): simulated one based on the single-crystal structure), PXRD pattern of solvent@3 compared with the simulated pattern of 3, and PXRD pattern of solvent@4 compared with the simulated pattern of 4.

Fig. S17 The TG curves of 1 (a), 2 (b), 3 (c), 4 (d). Fig. S18 The IR spectrum of 1 (a), 2 (b).

Fig. S19 The IR spectrum of 3 (a) and 4 (b) soaked in different solvents.