Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University

Similar documents
Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France

Mesoscopic Physics with Seismic waves «not nano but kilo»

Seismic Coda Waves. L. Margerin. CNRS, Toulouse, France

Role of mean free path in spatial phase correlation and nodal screening

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 31 Jan 2006

Recurrent scattering and memory effect at the Anderson transition

Casimir momentum in crossed electromagnetic fields. QED correction to Abraham force?

Cold atoms in the presence of disorder and interactions

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

3F1 Random Processes Examples Paper (for all 6 lectures)

Phase-charge duality in Josephson junction circuits: effect of microwave irradiation*

Anomalous wave transport in one-dimensional systems with. Lévy disorder

Temporal changes in the lunar soil from correlation of diffuse vibrations

X-ray Intensity Fluctuation Spectroscopy. Mark Sutton McGill University

Proceedings of Meetings on Acoustics

Mobile Radio Communications

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5

Phys 4322 Final Exam - Solution May 12, 2015

Radiative Transfer of Seismic Waves

Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials

PHYSICS 250 May 4, Final Exam - Solutions

Classical Scattering

Lecture 4. Diffusing photons and superradiance in cold gases

Holographic Entanglement Entropy for Surface Operators and Defects

Supplementary Information

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Preliminary Examination - Day 1 Thursday, August 10, 2017

Anderson localization of ultrasound in three dimensions

8 Quantized Interaction of Light and Matter

Is Quantum Mechanics Chaotic? Steven Anlage

Phase Synchronization

Varying the effective refractive index to measure optical transport in random media

Waveform inversion and time-reversal imaging in attenuative TI media

Stokes and the Surveyor s Shoelaces

Particle in one-dimensional box

A system that is both linear and time-invariant is called linear time-invariant (LTI).

University of Illinois at Chicago Department of Physics

EE485 Introduction to Photonics

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

E d. h, c o, k are all parameters from quantum physics. We need not worry about their precise definition here.

Dynamical Localization and Delocalization in a Quasiperiodic Driven System

9 Atomic Coherence in Three-Level Atoms

Problems of Chapter 1: Introduction

Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each):

Multiple Filter Analysis

Quantum Mechanics (Draft 2010 Nov.)

NMR in Strongly Correlated Electron Systems

Landau s Fermi Liquid Theory

Preliminary Examination - Day 1 Thursday, May 10, 2018

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley)

Radiometry HW Problems 1

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Coherent states, beam splitters and photons

A Lévy flight of light

Interaction theory Photons. Eirik Malinen

Photon-atom scattering

X-Ray Scattering Studies of Thin Polymer Films

Mean field theories of quantum spin glasses

Quantum Mechanics II Lecture 11 ( David Ritchie

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

The Geometry of Relativity

Quantum physics and the beam splitter mystery

Momentum isotropisation in random potentials

Spectroscopy Lecture 2

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Late-time tails of self-gravitating waves

Quantum superpositions and correlations in coupled atomic-molecular BECs

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Ghost Imaging. Josselin Garnier (Université Paris Diderot)

Title. Statistical behaviour of optical vortex fields. F. Stef Roux. CSIR National Laser Centre, South Africa

Quantum enhanced magnetometer and squeezed state of light tunable filter

Interaction X-rays - Matter

Symmetries 2 - Rotations in Space

Week 7: Integration: Special Coordinates

ECE 541 Stochastic Signals and Systems Problem Set 11 Solution

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order

Cosmic Variance of the Three-Point Correlation Function of the Cosmic Microwave Background

Optical Imaging Chapter 5 Light Scattering

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Correlation based imaging

Randomly Modulated Periodic Signals

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

Topological insulator part II: Berry Phase and Topological index

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

Uniformity of the Universe

Using transformation media to manipulate waves. C.T. Chan Hong Kong University of Science and Technology

WKB Approximation in 3D

Polarization and spatial coherence of electromagnetic waves in disordered media

11 Quantum theory: introduction and principles

MATHS 267 Answers to Stokes Practice Dr. Jones

(1) (2) (3) Main Menu. Summary. reciprocity of the correlational type (e.g., Wapenaar and Fokkema, 2006; Shuster, 2009):

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998.

Anderson localization and enhanced backscattering in correlated potentials

Transcription:

Dynamic correlations, interference and time-dependent speckles Bart van Tiggelen Laboratoire de hysique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Collaborators: Michel Campillo (LGIT-Grenoble) Grenoble) Ludovic Margerin (LGIT-Grenoble) Geert Rikken (LCM-Toulouse) atrick Sebbah (LMC-Nice) Sergey Skipetrov (LMMC Grenoble) hd: Eric Larose (LGIT) John age (Winnipeg, Canada) Michael Cowan (Toronto, Canada) Azriel Genack (Queens College,, NY) Support: GDR RIMA & IMCODE (CNRS), Ministère de la Recherche (ACI jeune chercheur), NSF (USA),( ESA

abstract Coherent Backscattering with Seismic Waves Eric Larose,, Ludovic Margerin,, Michel Campillo, BavT hase Statistics John age, Micheal Cowan, BAvT, Azriel Genack,, atrick Sebbah The Feigel process Geert Rikken, BavT

receiver source Free surface. Distance source receiver < wavelength. Symmetry source = symmetry receiver & magnitude measure y CBS( r) u Earth quake x x u y J π r λ x measure div u Explosion e t/τ magnitude measure u z Sledge hammer

Seismic waves in the French Auvergne ric Larose,, Ludovic Margerin,, Michel Campillo et Bart van Tiggelen, RL, July Operator noise Mesoscopic signal Background noise

oherent Backscattering in the French Auvergne 5 Hz λ Mean free time=.7 seconds Wavelength= = meter c Rayleigh = 3 m/s Mean free path = m

ImΨ Ψ Ψ = Ψ Ψ Ψ3... ReΨ probability distribution exp π detc ( ) ( * Ψ Ψ Ψ = ) *,... Ψ C Ψ C <Ψ Ψ >, N N ij i j diffusion equation

Ψ = Gaussian Speckles I e iφ intensity phase. Stationary: : Distribution of speckle intensity ( I ) =, φ exp( I/ < > ) < I> I. Dynamics :Distribution of «Wigner delay» time Ω Ω ( * Ψ C Ω Ψ) Ψ Ψ = ω, ω exp ( ) π det C dφ = φ ' dω = Q Q dφ dω ( ˆ' φ ) 3/

Speckles of Micro-waves in Quasi D media Distribution of delay time in transmission L 6D dφ = φ ' dω = Q Q ( ˆ' φ ) diffusion equation : Q = 3/ Genack, Sebbah, Stoytchev & Van Tiggelen RL, 999 5 dφ dω dφ dω

Diffuse Acoustic Wave Spectroscopy ψ t, τ) ( τ ψ t, τ) ( ψ ( t, τ ), ψ( t, τ ) ψ( t) = g( τ) = exp ( ( ) ) k n r τ 6 ct n= l* g( τ ) exp τ 6 t D AWS

Diffuse Acoustic wave Spectroscopy John age, Dave Weitz, Michael Cowan amplitude Wrapped phase unwrapped phase l* =.5mm; τ* = µs NORMALIZED FIELD AM -, HASE (rad),, - INUT (a) 5 5 5 3 35 TRANSIT TIME (µs) FIELD 7,5 8, 8,5 (c) t s AMLITUDE 7,5 8, 8,5 (d) TRANSIT TIME (µs) TRANSMITTED (b) HASE 7,5 8, 8,5, (f), - (g) (h) - - -6-8 t (s) 3 Time (seconds!),, -, (e) π π

robability distribution ( Φ) ( ) for phase shift Φ τ after time τ, (a) τ = ms (c) τ = 3 ms, dφ dτ = Q Q = 6t DAWS Q dφ dτ 3/ ( Φ), E-3, (b) τ = ms (d) τ = s,,5, t DAWS =ms,,5 π ( φ ) = ( π φ ) -6 - - 6-6 - - 6, Φ (rad)

robability distribution of SECOND derivative [ ψ t ), ψ( t ), ψ( t ), ψ( )] ( 3 t [ ] φ ) φ( ), φ '( ), φ '( ) ( t t t t t t da da t 3 da t 3 da dφ φ( t ) = φ φ' t φ" φ ''' t 6 ( t) ( ) 3? [ φ '( t), φ "( t), φ '''( t) ]

robability distribution of SECOND derivative φ( t ) = φ ± t [ ψ t ), ψ( t ), ψ( t ), ψ( )] ( 3 t [ ] φ ) φ( ), φ '( ), φ '( ) ( t t t t φ' t φ "( ) t t da da t 3 da t 3 da dφ [ ] φ '( t), φ "( t), φ " ( t) hase is not an analytic function

robability robability distribution of distribution of SECOND SECOND derivative derivative [ ] ( ) ( ) 3/ " ) ( " = R x x R x dx φ π φ [ ] ( ) 3/ " " " " = T T φ φ φ φ ( ) ( ) () () "() () 3 "() () g g T g g R = =

robability distribution of SECOND derivative φ " t DAWS Slope - DAWS signal or dynamic noise? Noise is interesting

L 6D atrick Sebbah Azriel Genack M. Berry, J. hys.a., 7 (978).

theorem dl φ( r) = πq Q= q i zero i - - θ Q = - R Q = dφ θ dφ π dθ dθ ( ) π circle d θ θ

dimensions 3 dimensions Q Count the mean free path? = dφ θ dφ π dθ dθ ( ) π circle d θ θ [ ( r ), ψ( r ), ψ( r3 ), ψ( r )] ψ ψ ( rψ ) *( r') = J( k r)exp( r/l)

The Feigel process: Momentum from nothing?. Feigel,, hys. Rev.. Lett. 9,, () avt & G. Rikken,, RL Comment bi-anisotropic media: D H = ε = B E χ χ E B ħω E = ρvv hω 3 π c B c kl ρ vn = ( ε ) ε E 3 nklχ hωc B Lorentz invariance? divergence.?

The Feigel process: Momentum from nothing? L ħω E d = ρvv B BAvT & G. Rikken En préparation ρ v 3 π = L hc χ E B 3 L πd πd sin L 3 πd cos L