AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

Similar documents
EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

ALMOST PERIODIC SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS ON HILBERT SPACES

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES EQUATIONS WITH NONREGULAR FORCE

EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES

ON PERIODIC SOLUTIONS TO SOME LAGRANGIAN SYSTEM WITH TWO DEGREES OF FREEDOM

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

PERIODIC SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL SYSTEMS WITH (q, p)-laplacian

EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SECOND ORDER NONLINEAR NEUMANN PROBLEMS

GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE

Integral type Fixed point Theorems for α-admissible Mappings Satisfying α-ψ-φ-contractive Inequality

HOMOCLINIC SOLUTIONS FOR SECOND-ORDER NON-AUTONOMOUS HAMILTONIAN SYSTEMS WITHOUT GLOBAL AMBROSETTI-RABINOWITZ CONDITIONS

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS GENERATED BY IMPULSES FOR SECOND-ORDER HAMILTONIAN SYSTEM

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR THIRD-ORDER q-difference EQUATIONS

SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS OF FIRST ORDER

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FUNCTIONAL INTEGRO-DIFFERENTIAL FRACTIONAL EQUATIONS

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k

Upper and lower solutions method and a fractional differential equation boundary value problem.

EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR TERM

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system

Fractional differential equations with integral boundary conditions

GLOBAL SOLVABILITY FOR INVOLUTIVE SYSTEMS ON THE TORUS

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

EXISTENCE OF SOLUTION FOR A FRACTIONAL DIFFERENTIAL INCLUSION VIA NONSMOOTH CRITICAL POINT THEORY. Bian-Xia Yang and Hong-Rui Sun

GLOBAL ATTRACTOR FOR A SEMILINEAR PARABOLIC EQUATION INVOLVING GRUSHIN OPERATOR

SOLVABILITY OF A QUADRATIC INTEGRAL EQUATION OF FREDHOLM TYPE IN HÖLDER SPACES

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

Advances in Difference Equations 2012, 2012:7

Theory of PDE Homework 2

LONG TERM BEHAVIOR OF SOLUTIONS FOR RICCATI INITIAL-VALUE PROBLEMS

LERAY LIONS DEGENERATED PROBLEM WITH GENERAL GROWTH CONDITION

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

NONLINEAR SCHRÖDINGER ELLIPTIC SYSTEMS INVOLVING EXPONENTIAL CRITICAL GROWTH IN R Introduction

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

A Concise Course on Stochastic Partial Differential Equations

STABILITY OF BOUNDARY-VALUE PROBLEMS FOR THIRD-ORDER PARTIAL DIFFERENTIAL EQUATIONS

SYMMETRY IN REARRANGEMENT OPTIMIZATION PROBLEMS

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

CONDITIONS FOR HAVING A DIFFEOMORPHISM BETWEEN TWO BANACH SPACES

INITIAL-VALUE PROBLEMS FOR FIRST-ORDER DIFFERENTIAL RECURRENCE EQUATIONS WITH AUTO-CONVOLUTION

BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

ON A CERTAIN GENERALIZATION OF THE KRASNOSEL SKII THEOREM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

A GENERAL PRODUCT MEASURABILITY THEOREM WITH APPLICATIONS TO VARIATIONAL INEQUALITIES

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

Equations paraboliques: comportement qualitatif

DIfferential equations of fractional order have been the

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

On boundary value problems for fractional integro-differential equations in Banach spaces

Properties of a New Fractional Derivative without Singular Kernel

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2)

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS AT RESONANCE IN HILBERT SPACES

SOLUTION OF AN INITIAL-VALUE PROBLEM FOR PARABOLIC EQUATIONS VIA MONOTONE OPERATOR METHODS

CONSEQUENCES OF TALENTI S INEQUALITY BECOMING EQUALITY. 1. Introduction

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS

Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient

Université de Metz. Master 2 Recherche de Mathématiques 2ème semestre. par Ralph Chill Laboratoire de Mathématiques et Applications de Metz

Math 699 Reading Course, Spring 2007 Rouben Rostamian Homogenization of Differential Equations May 11, 2007 by Alen Agheksanterian

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

PERIODIC SOLUTIONS OF THE FORCED PENDULUM : CLASSICAL VS RELATIVISTIC

l(y j ) = 0 for all y j (1)

ORBITAL STABILITY OF SOLITARY WAVES FOR A 2D-BOUSSINESQ SYSTEM

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

EIGENVALUE QUESTIONS ON SOME QUASILINEAR ELLIPTIC PROBLEMS. lim u(x) = 0, (1.2)

A Classes of Variational Inequality Problems Involving Multivalued Mappings

EXAMINATION SOLUTIONS

ON A GENERALIZATION OF KRASNOSELSKII S THEOREM

Hille-Yosida Theorem and some Applications

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT BOUNDARY-VALUE PROBLEM. Ruyun Ma

Nonlocal Cauchy problems for first-order multivalued differential equations

APPROXIMATING SOLUTIONS FOR THE SYSTEM OF REFLEXIVE BANACH SPACE

SOME RESULTS FOR BOUNDARY VALUE PROBLEM OF AN INTEGRO DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

KRASNOSELSKII-TYPE FIXED POINT THEOREMS UNDER WEAK TOPOLOGY SETTINGS AND APPLICATIONS

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010),

ON THE ANALYSIS OF A VISCOPLASTIC CONTACT PROBLEM WITH TIME DEPENDENT TRESCA S FRIC- TION LAW

Transcription:

Electronic Journal of Differential Equations, Vol. 215 (215), No. 95, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS NEMAT NYAMORADI, MOHAMMAD RASSOL HAMIDI Abstract. In this article, using an iterative technique, we introduce an extension of the Lax-Milgram theorem which can be used for proving the existence of solutions to boundary-value problems. Also, we apply of the obtained result to the fractional differential equation td α T D α t u(t) + u(t) = λf(t, u(t)) t (, T ), u() = u(t ) =, where tdt α and Dt α are the right and left Riemann-Liouville fractional derivative of order 1 < α 1 respectively, λ is a parameter and f : [, T ] R R 2 is a continuous function. Applying a regularity argument to this equation, we show that every weak solution is a classical solution. 1. Introduction Fractional differential equations form a very important and significant part of mathematical analysis and its applications to real-world problems. On the other hand, the Lax-Milgram theorem is a very useful tool in the wide area of functional analysis such as the theory of operator equations in Banach spaces. It is also used in the studies of fractional differential equations, ordinary and partial differential equations (see [1, 3, 4] and the references therein). For example, Ervin and Roop [3] using the Lax-Milgram theorem, investigated the existence of solutions to the following fractional boundary value problem Da ( p D β t ) Du(t) + b(t)du(t) + c(t)u(t) = f(t), + q t D β 1 u() = u(1) =, where D represents a single spatial derivative, D β t and t D β 1 are the left and right Riemann-Liouville fractional integrals of order β < 1, respectively, f, c C([, 1]) and b C 1 ([, 1]), a > and p, q 1 with p + q = 1. Recently, Jiao and Zhou [7], for the first time, showed that the critical point theory is an effective approach for studying the existence for the following fractional boundary value problem td α T ( D α t u(t) ) = F (t, u(t)), t (, T ), 21 Mathematics Subject Classification. 34A8, 35A15, 35B38. Key words and phrases. Lax-Milgram theorem; fractional differential equation. c 215 Texas State University - San Marcos. Submitted February 1, 215. Published April 13, 215. 1

2 N. NYAMORADI, M. R. HAMIDI EJDE-215/95 u() = u(t ) =, and obtained the existence of at least one nontrivial solution. We know that, we can only use the Lax-Milgram theorem to prove the existence of solutions to equations in the form Lu = f(t), where f is independent of u and L is an operator. In our investigations, we apply the iterative technique to generalize the Lax-Milgram theorem [2]. Moreover, we are going to study the solvability of the following fractional differential equation td α T D α t u(t) + u(t) = λf(t, u(t)) t (, T ), u() = u(t ) =, (1.1) where t DT α and Dt α are the right and left Riemann-Liouville fractional derivative of order 1/2 < α 1 respectively, λ is a parameter and f : [, T ] R R is a continuous function. This article is organized as follows: Section 2 is devoted to our main results. In Section 3, we prove any weak solution of Problem (1.1) is a classical solution. 2. Main results In this section, firstly, we recall some notation and theorems to obtain the results of this work. Let (X, X ) be a real Banach space with dual space X. Denote by B r (x ) the ball B r (x ) = {x X : x x X r}. In the following, we state the Lax-Milgram theorem. Theorem 2.1 ( [2, Proposition 1.2.41]). Let H be a complex Hilbert space and let B : H H C be a mapping with the following properties: (i) The mapping x B(x, y) is linear for any y H. (ii) B(x, α 1 y 1 + α 2 y 2 ) = ᾱ 1 B(x, y 1 ) + ᾱ 2 B(x, y 2 ) for every x, y 1, y 2 H, α 1, α 2 C. (iii) There is a constant c such that B(x, y) c x y for every x, y H. Then there is A L(H), A L(H) c, such that B(x, y) = (x, Ay), x, y H. Moreover, if (iv) there is a positive constant d such that B(x, x) d x 2 x H, then A is invertible, A 1 L(H) and A 1 L(H) 1 d. The main result of this section reads as follows. Theorem 2.2. Suppose that H is a Hilbert space, B(u, v) is a continuous coercive bilinear form on H and F : H H satisfying the following conditions: (F1) There exists a constant N > such that F (u) H N u B 1 (), where B 1 () = {u H : u H 1} (F2) If {u k } is a sequence in H such that u k u weakly in H, then the sequence {F (u k )} has a subsequence {F (u kn )} such that F (u kn ) F (u) weakly in H.

EJDE-215/95 AN EXTENSION OF THE LAX-MILGRAM THEOREM 3 Then, there exists a constant L > such that for any λ R with λ L, there exists an element ũ H such that B(ũ, v) = λ F (ũ), v v H. Proof. Take any u H with u H 1. From the Riesz representation theorem, there exists a unique element G(u ) H such that G(u ) H = F (u ) H and F (u ), v = (G(u ), v) v H, (2.1) where (, ) denotes the inner product of H. By the hypotheses of the theorem, there are two constants a > and b > such that for all u, v H, we have B(u, v) a u H v H, B(u, u) b u 2 H. Thus, the Lax-Milgram theorem (see [2]) yields the existence of a continuous and invertible linear operator A on H such that A L(H) a, A 1 L(H) 1/b and B(u, v) = (Au, v) u, v H. (2.2) Then, one can conclude the existence of a unique element u 1 H such that Au 1 = λg(u ). So, in view of (2.1) and (2.2), we have that such that B(u 1, v) = (Au 1, v) = λ(g(u ), v) = λ F (u ), v v H u 1 H = λ A 1 G(u ) H N λ. b Set L = b/n. Hence if λ L, one can get B(u 1, v) = λ F (u ), v v H, u 1 H 1. Similarly, there exists an element u 2 H such that B(u 2, v) = λ F (u 1 ), v v H, u 2 H 1. So by induction, we have a sequence {u n } such that B(u n, v) = λ F (u n 1 ), v v H, u n H 1. (2.3) The reflexivity of H implies that there exists a subsequence of {u n } still denoted by {u n } such that u n ũ weakly in H. Finally, in view of (F2), the desired conclusion follows from (2.3) and letting n +. Now, by using Theorem 2.2, we prove the existence of one solution to Problem (1.1). To this end, we need the following preliminaries. Definition 2.3 ( [9, 8]). Let φ be a function defined on [, T ]. Then, the left and right Riemann-Liouville fractional integrals of order < α < 1 on the interval [, T ] are respectively defined by I α t φ(t) = 1 Γ(α) t (t ξ) α 1 φ(ξ)dξ,

4 N. NYAMORADI, M. R. HAMIDI EJDE-215/95 ti α T φ(t) = 1 Γ(α) t (ξ t) α 1 φ(ξ)dξ. The left and right Riemann-Liouville fractional derivatives of order < α < 1 on the interval [, T ] are respectively defined by Dt α φ(t) = d ( ) It 1 α φ(t), dt tdt α φ(t) = d ( ) ti 1 α T φ(t). dt Taking p = 2 in Definition 3.1, [6, Propositions 3.1 and 3.3], we deduce the following definition and theorems. Definition 2.4 ( [6]). Let < α 1. The fractional derivative space E α is defined by the closure of C ([, T ]) with respect to the norm ( 1/2. u E α = u 2 L 2 (,T ) + Dt α u 2 L 2 (,T )) Theorem 2.5 ( [6]). Let < α 1. The fractional derivative space E α is a reflexive and separable Banach space. Remark 2.6. In fact, the space E α is a separable Hilbert space with the inner product ( ) (u, v) E α = Dt α u(t) Dt α v(t) + u(t)v(t) dt. Theorem 2.7 ( [6]). Assume that α > 1 2 and the sequence {u k} converges weakly to u in E α, then u k u in C([, T ]). Remark 2.8 ( [6]). We have u T α 1 2 Γ(α)(2α 1) 1/2 u E α u E α. Definition 2.9. A function u E α is a weak solution of Problem (1.1), provided that ( ) Dt α u(t) Dt α v(t) + u(t)v(t) dt = λ f(t, u(t))v(t)dt. (2.4) for any v E α. Set = max { [ T α 1 2 f(t, s) : (t, s) [, T ] Γ(α)(2α 1), T α 1 ]} 2. 1/2 Γ(α)(2α 1) 1/2 Theorem 2.1. Suppose that 1 2 < α 1 and f C([, T ] R, R), then for any λ 1, Problem (1.1) has at least one weak solution. T 1/2 Proof. First, we define B(u, v) = ( ) T Dt α u(t) Dt α v(t) + u(t)v(t) dt. Since, B(u, v) D α t u 2 D α t v 2 + u 2 v 2 2 u 2 E α v 2 E α, B(u, u) u 2 E α, it follows that B is a continuous coercive bilinear form on E α with a = 2 and b = 1.

EJDE-215/95 AN EXTENSION OF THE LAX-MILGRAM THEOREM 5 We now define F (u), v = F : E α (E α ), f(t, u(t))v(t)dt. Assume u E α with u E α 1. Then, in view of Remark 2.8, one has T α 1 2 u Γ(α)(2α 1) u 1/2 E α T α 1 2. (2.5) Γ(α)(2α 1) 1/2 T and we have u(t) α 2 1 for any t [, T ]. So, we can conclude that Γ(α)(2α 1) 1/2 f(t, u(t)) for any t [, T ]. For any v E α with v E α = 1, by the Hölder inequality, we have F (u), v = ( f(t, u(t))v(t)dt f(t, u) dt) 2 1/2 v L2 (,T ) T 1/2. Taking N = T 1/2, Condition (F1) holds. Suppose {u k } is a sequence in E α such that u k u weakly in E α. Then, Theorem 2.7 yields that for any t [, T ] u k (t) u(t) t [, T ]. By using it and that f is continuous, we have f(t, u k (t)) f(t, u(t)) as k, t [, T ]. (2.6) On the other hand, {u k } is a bounded subset of E α (see [1, Theorem 3.18]). In other words, there exists a constant K > such that u k E α K for any k N. KT From (2.5), we have u k α 2 1 Γ(α)(2α 1) 1/2 there exists a constant > such that for any k N. Therefore, we have that f(t, u k (t)) < a.e. on [, T ], k = 1, 2, 3,.... (2.7) From (2.7), (2.6) and the Lebesgue s dominated theorem, we conclude that f(t, u k ) f(t, u) 2 dt. For any v E α with v E α = 1, we have F (u k ) F (u), v = ( ) f(t, u k (t)) f(t, u(t) v(t)dt f(t, u k ) f(t, u) 2, which yields that F satisfies (F2). Then by Theorem 2.2, we obtain the desired conclusion. 3. Regularity The main result of this section reads as follows. Theorem 3.1. Under the assumptions of Theorem 2.1, every weak solution of Problem (1.1) is a classical solution. To prove the above theorem, we need the following lemmas and definitions.

6 N. NYAMORADI, M. R. HAMIDI EJDE-215/95 Definition 3.2 ( [5]). Let u L 2 (, T ), v, w L 2 (, T ) and u(t) t D α T ϕ(t)dt = u(t) D α t ϕ(t)dt = v(t)ϕ(t)dt ϕ C (, T ), w(t)ϕ(t)dt ϕ C (, T ). The functions v and w given above will be called the weak left and the weak right fractional derivative of order α (, 1] of u respectively. Here, we denote them by D α t u(t) and t D α T u(t) respectively. In view of Definition 2.4, u E α means that u is the limit of a Cauchy sequence {u n } C (, T ). In other words, u n u in L 2 (, T ) and there exists an element w L 2 (, T ) such that Dt α u n w in L 2 (, T ). Then for any ϕ C (, T ), we have w(t)ϕ(t)dt = lim Dt α u n (t)ϕ(t)dt n = lim n = u n (t) t D α T ϕ(t)dt u(t) t D α T ϕ(t)dt. So, w = D α t u however it is not clear whether D α t u(t) exists in the usual sense, for any t [, T ] or not (see [1, p. 22] for the case α = 1). Remark 3.3 ( [3, Lemma 2.7]). Let u E α, then for any v E α, we have u(t) t D α T v(t)dt = = = I α t D α t u(t) t D α T v(t)dt D α t u(t) t I α T td α T v(t)dt D α t u(t) v(t)dt. Since C (, T ) E α, we conclude D α t u(t) = D α t u(t) a.e. on [, T ]. Lemma 3.4. Let u E α, then D α t u is almost everywhere equal to the weak derivative of It 1 α u in the H 1 (, T ) sense. In other words D α t u(t) = D( I 1 α t u(t)) a.e. on [, T ]. Proof. For any ϕ C (, T ), we have (see [6, Remark 3.1] and [8, Theorem 2.1]) D α t u(t)ϕ(t)dt = = = = u(t) t D α T ϕ(t)dt u(t) C t D α T ϕ(t)dt u(t) t I 1 α T (Dϕ(t))dt It 1 α u(t)dϕ(t)dt.

EJDE-215/95 AN EXTENSION OF THE LAX-MILGRAM THEOREM 7 Lemma 3.5. Let < α 1. (i) If 1 2 < α 1 and u L2 (, T ), then I α u() =. (ii) If u C([, T ]), then I α t u C([, T ]). (iii) If u C 1 ([, T ]) and u() =, then I α t u C 1 ([, T ]). Proof. It is easy to see that I α t u(t) t α 1 2 Γ(α)(2α 1) 1/2 u 2, which completes the proof of (i). Let t [, T ] and {t n } be a sequence in [, T ] such that t n t. We take M = max t T u(t). From u(t n s) u(t s) a.e. on [, T ], s α 1 u(t n s) u(t s) 2Ms α 1, and the Lebesgue s dominated theorem, we conclude that t s α 1 u(t n s)ds s α 1 u(t s)ds ξ s α 1 u(t n s) u(t s) ds + t s α 1 u(t s) ds s α 1 u(t n s) u(t s) ds + s α 1 u(t s) ds, t where ξ = max{t, t 1, t 2,...}. This concludes the proof of (ii). Suppose that K = max t T u (t), then u(tn s) u(t s) t n t K. Hence by the Lebesgue s dominated theorem, we conclude that ( It α Γ(α) n u(t n ) It α u(t )) t n t Thus t = s α 1 u(t n s) u(t s) ds + s α 1 u(t n s) u(t s) ds t n t t t n t + s α 1 u(t s) u() t s t ds s α 1 u (t s)ds. t t s t n t ( (t It u(t)) α ) = It α u (t ). From this and part (ii), we can conclude (iii). Lemma 3.6. Suppose that for some u L 2 (, T ), D α t u exists and is almost everywhere equal to a function in C([, T ]). Then: (i) u is almost everywhere equal to a function ũ C([, T ]). (ii) D α t u(t) exists for any t [, T ] and D α t u C([, T ]).

8 N. NYAMORADI, M. R. HAMIDI EJDE-215/95 Proof. Lemma 3.4 implies that D( It 1 α u) is almost everywhere equal to a function in C([, T ]). Therefore, It 1 α u is almost everywhere equal to a function in C 1 ([, T ]) (see [1, p. 24]). Thus by Lemma 3.5, t u(s)ds = It α It 1 α u(t) C 1 ([, T ]). Take ũ(t) = D( t u(s)ds) (see [1, Lemma 8.2]), this completes the proof of (i). Lemma 3.5 implies that I 1 α t ũ(t) C([, T ]). Since It 1 α u(t) = It 1 α ũ(t) t [, T ], (3.1) we can conclude It 1 α u(t) C([, T ]). By using it and the fact that It 1 α u is almost everywhere equal to a function in C 1 ([, T ]), we can conclude It 1 α u(t) C 1 ([, T ]). The desired conclusion can be obtained from Dt α u(t) = D ( It 1 α u(t) ). Quite similar to Lemma 3.5 and Lemma 3.6, we have the following lemmas. Lemma 3.7. Let 1/2 < α 1. (i) If u L 2 (, T ), then T IT α u(t ) =. (ii) If u C([, T ]), then t IT α u C([, T ]). (iii) If u C 1 ([, T ]) and u(t ) =, then t IT αu C1 ([, T ]). Lemma 3.8. Suppose that u L 2 (, T ), t DT α u exists and is almost everywhere equal to a function in C([, T ]). Then: (i) u is almost everywhere equal to a function ũ C([, T ]). (ii) t DT αu(t) exists for any t [, T ] and tdt α u C([, T ]). Proof of Theorem 3.1. Suppose that u is the weak solution of Problem (1.1). Set g(t) = λf(t, u(t)) u(t). By Definition of weak solution, one has D α t u(t) D α t v(t)dt = g(t)v(t)dt v E α. Thus from definition 3.2, we have g(t) = t D α T Dt α u(t) and from Remark 3.3, we can conclude g(t) = t D α T D α t u(t). From Theorem 2.7, g C([, T ]). Then Lemma 3.8 implies that t DT α D α t u(t) exists for any t [, T ], t DT α D α t u(t) C([, T ]) and D α t u is almost everywhere equal to an element of C([,T]). Then from Lemma 3.6(ii), we have Dt α u exists for any t [, T ] and Remark 3.3 yields D α t u = Dt α u a.e. on [, T ]. Hence, we conclude that t DT α Dt α u(t) exists for any t [, T ]. Since g and t DT α Dt α u are almost everywhere equal and they are continuous, we have tdt α Dt α u(t) = g(t) t [, T ], which completes the proof. Acknowledgements. The authors are grateful to the anonymous referees for their valuable comments and suggestions. References [1] H. Brezis; Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, (211) [2] P. Drábek, J. Milota; Methods of nonlinear analysis: applications to differential equations. Springer, (213).

EJDE-215/95 AN EXTENSION OF THE LAX-MILGRAM THEOREM 9 [3] V. Ervin, J. Roop; Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. Diff. Eqs, Vol. 22 (26) 58-76. [4] L.C. Evans; Partial Differential Equations. Amer. Math. Soc., (1998) [5] D. Idczak, S. Walczak; Fractional Sobolev Spaces via Riemann-Liouville Derivatives. Journal of Function Spaces and Applications, (213) Article ID 12843. [6] F. Jiao, Y. Zhou; Existence of solutions for a class of fractional boundary value problems via critical point theory. Computer and math. with Apps., Vol. 62 (211) 1181-1199. [7] F. Jiao, Y. Zhou; Existence results for fractional boundary value problem via critical point theory. Intern. Journal of Bif. and Chaos, Vol. 22 (212) 1-17. [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 24, Elsevier Science, Amsterdam, (26). [9] I. Podlubny; Fractional differential equations. Academic Press, New York, (1999). [1] W. Rudin; Functional Analysis. McGraw Hill, (1973) Nemat Nyamoradi Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran E-mail address: nyamoradi@razi.ac.ir, neamat8@yahoo.com Mohammad Rassol Hamidi Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran E-mail address: mohammadrassol.hamidi@yahoo.com