Background photo: CMS detector in access (i.e., broken-symmetry) mode. David Stuart, UCSB 1

Similar documents
Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara. CMS SUSY Search, D. Stuart, June 2011, Lisbon!

Preparations for SUSY searches at the LHC

CMS Searches for New Physics

Preparations for SUSY searches at the LHC

Overall CMS SUSY search strategy

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München)

Search for SUSY at CMS in lepton or photon final states. PANIC 2011 K. Theofilatos (on behalf of CMS)

Search for New Physics in the Multijet and Missing Transverse Momentum Final State at CMS

Taller de Altas Energías Michael Holzbock September 7, LMU Munich

SUSY Phenomenology & Experimental searches

Search for Supersymmetry at CMS in all-hadronic final states

Final states with third generation quarks at 13 TeV. Pieter Everaerts. On Behalf of the ATLAS and CMS collaborations.

Top Quark Physics at the LHC

SUSY searches at LHC and HL-LHC perspectives

Dirac gauginos, R symmetry and the 125 GeV Higgs

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

Search for the Standard Model Higgs Boson in H WW lν lν with the ATLAS experiment

CMS Searches for SUSY in Hadronic Final States

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS Kobe, Japan

Status of ATLAS+CMS SUSY searches

SUSY in Hadronic Final States at CMS. Joshua Thompson, Cornell University 26 Aug 2013 SUSY2013 Conference Trieste, Italy

SUSY Experimental Results from CMS and ATLAS

Search for long-lived particles at CMS. TeVPA Brian Francis for the CMS Collaboration

CMS. Saeid Paktinat. On behalf of the CMS Collaborations. (IPM, Tehran)

Higgs search in WW * and ZZ *

CMS 13 TeV Results. LPCC Special Seminar. On behalf of the CMS Collaboration. December 15, Jim Olsen Princeton University

Hadronic Search for SUSY with MT2 variable

CMS Searches for SUSY in Final States with Taus. Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration

Inclusive SUSY Particle Searches

Searches for Supersymmetry at ATLAS

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009

SUSY searches at the LHC Run 2

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

DPF2015. Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS

This work is supported in part by the

SUSY Search Strategies at Atlas and CMS

Boosted Top Resonance Searches at CMS

Latest results on the SM Higgs boson in the WW decay channel using the ATLAS detector

New Physics Searches at CMS

Mono-X, Associate Production, and Dijet searches at the LHC

Inclusive top pair production at Tevatron and LHC in electron/muon final states

Measurement of the Z ττ cross-section in the semileptonic channel in pp collisions at s = 7 TeV with the ATLAS detector

ICHEP 2008 Philadelphia

Searches for heavy neutrinos and high-mass ditau resonances with CMS

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Teruki Kamon For the CMS Collaboration

Search for the Standard Model Higgs in WW (lν)(lν)

SUSY searches with ATLAS What did we learn with few fb -1?

Search for Dark Matter in the mono-x* final states with ATLAS

Highlights of top quark measurements in hadronic final states at ATLAS

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

SEARCH FOR INVISIBLE DECAY MODES OF THE HIGGS BOSON WITH THE ATLAS DETECTOR

Searches for Exotica with CMS

Top Quark Studies with CMS

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

SEARCH FOR 4 TH GENERATION QUARKS AT CMS

Inclusive searches in ATLAS: How can we discover SUSY in 2009

Top properties and ttv LHC

Higgs Boson Searches at ATLAS

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

ATLAS SUSY search in 0-lepton channel with boosted W bosons

Un-ki Yang. Seoul National University. WIN 2015, June 8-13, 2015, MPIK Heidelberg, On behalf of the ATLAS and CMS collaborations

On behalf of the ATLAS and CMS Collaborations

Recent searches for new particles using 13 TeV data with ATLAS at the LHC

Fourth Generation and Dark Matter

Status of Supersymmetric Models

Top quark mass at ATLAS and CMS

arxiv: v1 [hep-ex] 8 Jan 2018

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Searches for SUSY & Exotics with ATLAS

First V+jets results with CMS. Vitaliano Ciulli (Univ. & INFN Firenze) V+jets workshop, 8-10 Sep 2010, Durham

Highlights of top-quark measurements in hadronic nal states at ATLAS

SUSY searches with ATLAS

The Tevatron s Search for High Mass Higgs Bosons

Dark Matter in ATLAS

Supersymmetry searches in ATLAS and CMS in hadronic final states. Sascha Caron (Nikhef and Radboud University Nijmegen)

7 Results 7.1 Results for the inclusive-mt2 analysis 7.2 Results for the MT2 Higgs analysis

Electroweak Measurements at LHCb!

CMS. S.Paktinat. School of Particles and Accelerators Institute for Studies in Theoretical Physics and Mathematics (IPM) May 23, 2013

Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run2 data

PDF Studies at LHCb! Simone Bifani. On behalf of the LHCb collaboration. University of Birmingham (UK)

Latest results on the SM Higgs boson in the WW decay channel using the ATLAS detector ATLAS-CONF

Dimitris Iliadis AUTh, LAPP. On behalf of the ATLAS collaboration. XIIth Quark Confinement and the Hadron Spectrum 29 August 2016, Thessaloniki

tt + X production at ATLAS and CMS

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016

Lessons From the First Round of SUSY Searches on the Way to 1 fb -1 at the LHC

Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum

Searches for new physics in same-sign leptons final states with the ATLAS experiment

Higgs-related SM Measurements at ATLAS

Heavy T' LHC José David Ruiz-Alvarez On behalf of the ATLAS and CMS collaborations

Top production at the Tevatron

Searching for the Higgs at the LHC

Supersymmetry Put to the Test CMS SUSY Searches Yesterday and Tomorrow. Steven Lowette. Cornell University 1 February 2012

[ ] Search for tth and th production (not including H bb) at the LHC. !!!!! Top2015 Ischia. Josh McFayden

Hunting light SUSY: combined impact of LHC searches

PoS(CKM2016)117. Recent inclusive tt cross section measurements. Aruna Kumar Nayak

Search for a heavy scalar boson decaying into a pair of Z bosons in the 2l2ν final state in CMS

Transcription:

Recent CMS SUSY Searches David Stuart, UC Santa Barbara Background photo: CMS detector in access (i.e., broken-symmetry) mode David Stuart, UCSB

Why supersymmetry? Dark matter and hierarchy problem. Δm H = H H David Stuart, UCSB

Why supersymmetry? Naturalness Δm H = H. TeV H.5 TeV. TeV Papucci, et al., arxiv:.696 David Stuart, UCSB

Why supersymmetry? Naturalness Δm H = H.5 TeV H.7 TeV. TeV Papucci, et al., arxiv:.696 David Stuart, UCSB

Why supersymmetry? Rich signature generator David Stuart, UCSB 5

Searches across many signatures with 8 TeV data RPV slepton EWK gauginos sbottom stop squark gluino production g qq χ g bb χ g tt χ g t( t t χ ) ± g qq( χ Wχ ) ± g b( b t( χ Wχ )) q q χ t t χ + t b( χ Wχ ) t t b χ ( χ H G) t ( t t χ ) Z t ( t t χ ) H b b χ b tw χ b bz χ χ χ lll ν χ χ ± + - + - χ χ l l ν ν χ χ χ χ Z Z χ χ ± χ χ W Z χ χ χ χ H Z χ χ ± χ χ H W χ χ χ χ llτ ν χ χ ± χ χ τττ ν χ χ ± l l χ g qllν λ g qllν λ g qllν λ 3 33 g qbtµ λ ' 3 g qbtµ λ ' g qqb λ '' 33 3/3 g qqq λ '' g tbs λ '' 33 g qqqq λ '' q qllν λ q qllν λ 3 q qllν λ 33 q qbtµ λ ' 3 q qbtµ λ ' 33 q qqqq λ '' R t µ e ν t λ R t µ τν t λ R 3 t µ τν t λ R 33 t tbtµ λ ' R 33 Summary of CMS SUSY Results* in SMS framework m(mother)-m(lsp)= GeV SUS 3-9 L=9.5 /fb SUS-4- SUS-3-9 L=9.3 9.5 /fb SUS-3-7 SUS-3-3 L=9.4 9.5 /fb SUS-3-8 SUS-3-3 L=9.5 /fb SUS-3-3 L=9.5 /fb SUS-3-8 SUS-3-3 L=9.5 /fb SUS-3-9 L=9.5 /fb SUS-4- L=9.5 /fb SUS-3- L=9.5 /fb SUS-3-4 L=9.5 /fb SUS-3-4 SUS-3-4 L=9.5 /fb SUS-3-4 SUS-3-4 L=9.5 /fb SUS-3-8 L=9.4 /fb SUS-3-8 SUS-3-3 L=9.5 /fb SUS-3-8 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-4- L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-4- L=9.5 /fb SUS-4- L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb EXO--49 L=9.5 /fb EXO--49 L=9.5 /fb SUS-3-3 L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS-3-3 L=9.5 /fb x =.5 x =.5 x =.75 x =.95 x =.5 x =.5 x =.95 4 6 8 4 6 8 Mass scales *Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit David Stuart, UCSB 6 x =.5 x =.5 x =. x =.5 ICHEP 4 m(lsp)= GeV CMS Preliminary For decays with intermediate mass, = x m +(-x) m m intermediate mother lsp

Searches across many signatures with 8 TeV data gluinos squarks stop sbottom EWKinos Sleptons RPV RPV slepton EWK gauginos sbottom stop squark gluino production g qq χ g bb χ g tt χ g t( t t χ ) ± g qq( χ Wχ ) ± g b( b t( χ Wχ )) q q χ t t χ + t b( χ Wχ ) t t b χ ( χ H G) t ( t t χ ) Z t ( t t χ ) H b b χ b tw χ b bz χ χ χ lll ν χ χ ± + - + - χ χ l l ν ν χ χ χ χ Z Z χ χ ± χ χ W Z χ χ χ χ H Z χ χ ± χ χ H W χ χ χ χ llτ ν χ χ ± χ χ τττ ν χ χ ± l l χ g qllν λ g qllν λ g qllν λ 3 33 g qbtµ λ ' 3 g qbtµ λ ' g qqb λ '' 33 3/3 g qqq λ '' g tbs λ '' 33 g qqqq λ '' q qllν λ q qllν λ 3 q qllν λ 33 q qbtµ λ ' 3 q qbtµ λ ' 33 q qqqq λ '' R t µ e ν t λ R t µ τν t λ R 3 t µ τν t λ R 33 t tbtµ λ ' R 33 Summary of CMS SUSY Results* in SMS framework m(mother)-m(lsp)= GeV SUS 3-9 L=9.5 /fb SUS-4- SUS-3-9 L=9.3 9.5 /fb SUS-3-7 SUS-3-3 L=9.4 9.5 /fb SUS-3-8 SUS-3-3 L=9.5 /fb SUS-3-3 L=9.5 /fb SUS-3-8 SUS-3-3 L=9.5 /fb SUS-3-9 L=9.5 /fb SUS-4- L=9.5 /fb SUS-3- L=9.5 /fb SUS-3-4 L=9.5 /fb SUS-3-4 SUS-3-4 L=9.5 /fb SUS-3-4 SUS-3-4 L=9.5 /fb SUS-3-8 L=9.4 /fb SUS-3-8 SUS-3-3 L=9.5 /fb SUS-3-8 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-4- L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-4- L=9.5 /fb SUS-4- L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS-3-6 L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb EXO--49 L=9.5 /fb EXO--49 L=9.5 /fb SUS-3-3 L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS-3-3 L=9.5 /fb x =.5 x =.5 x =.75 x =.95 x =.5 x =.5 x =.95 4 6 8 4 6 8 Mass scales *Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit David Stuart, UCSB 7 x =.5 x =.5 x =. x =.5 ICHEP 4 m(lsp)= GeV CMS Preliminary For decays with intermediate mass, = x m +(-x) m m intermediate mother lsp

Searches across many signatures with 8 TeV data RPV slepton EWK gauginos sbottom stop squark gluino production g qq χ SUS 3-9 L=9.5 /fb g bb χ SUS-4- SUS-3-9 L=9.3 9.5 /fb gluino mass limits g tt χ SUS-3-7 of SUS-3-3. L=9.4 -.4 9.5 /fb TeV g t( t t χ ) SUS-3-8 SUS-3-3 L=9.5 /fb ± g qq( χ Wχ ) SUS-3-3 L=9.5 /fb ± g b( b t( χ Wχ )) SUS-3-8 SUS-3-3 L=9.5 /fb squark mass limits q q χ SUS-3-9 of L=9.5.6 /fb -. TeV t t χ + x =.5 t b( χ Wχ ) SUS-3- L=9.5 /fb x =.5 x =.75 t t b χ ( χ H G) SUS-3-4 L=9.5 /fb stop mass limits t ( t t χ ) Z up SUS-3-4 to SUS-3-4.7 L=9.5 TeV, /fb with much model dependence t ( t t χ ) H SUS-3-4 SUS-3-4 L=9.5 /fb b b χ SUS-3-8 L=9.4 /fb sbottom mass b tw limits χ SUS-3-8 up SUS-3-3 to L=9.5.8 /fb TeV b bz χ SUS-3-8 L=9.5 /fb ± χ χ lll ν χ χ SUS-3-6 L=9.5 /fb + x =.95 - + - χ χ l l ν ν χ χ SUS-3-6 L=9.5 /fb χ χ Z Z χ χ SUS-4- L=9.5 /fb ± χ χ W Z χ χ SUS-3-6 L=9.5 EWKinos mass χ χ H Z χ χ limits SUS-4- L=9.5 in /fbsome scenarios ± χ χ H W χ χ SUS-4- L=9.5 /fb ± x =.5 χ χ llτ ν χ χ SUS-3-6 L=9.5 /fb x =.5 x =.95 ± χ χ τττ ν χ χ SUS-3-6 L=9.5 /fb l l χ SUS-3-6 L=9.5 /fb Sleptons mass limits in some scenarios g qllν λ g qllν λ g qllν λ 3 33 g qbtµ λ ' 3 g qbtµ λ ' g qqb λ '' 33 3/3 g qqq λ '' g tbs λ '' 33 g qqqq λ '' q qllν λ q qllν λ 3 q qllν λ 33 q qbtµ λ ' 3 q qbtµ λ ' 33 q qqqq λ '' R t µ e ν t λ R t µ τν t λ R 3 t µ τν t λ R 33 t tbtµ λ ' R 33 Summary of CMS SUSY Results* in SMS framework m(mother)-m(lsp)= GeV SUS-4- L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb EXO--49 L=9.5 /fb EXO--49 L=9.5 /fb SUS-3-3 L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS-3-3 L=9.5 /fb RPV limits in many scenarios x =.5 x =.5 x =. x =.5 ICHEP 4 m(lsp)= GeV CMS Preliminary For decays with intermediate mass, = x m +(-x) m m intermediate 4 6 8 4 6 8 Mass scales *Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit mother lsp David Stuart, UCSB 8

Searches across many signatures with 8 TeV data RPV slepton EWK gauginos sbottom stop squark gluino production g qq χ SUS 3-9 L=9.5 /fb g bb χ SUS-4- SUS-3-9 L=9.3 9.5 /fb gluino mass limits g tt χ SUS-3-7 of SUS-3-3. L=9.4 -.4 9.5 /fb TeV g t( t t χ ) SUS-3-8 SUS-3-3 L=9.5 /fb ± g qq( χ Wχ ) SUS-3-3 L=9.5 /fb ± g b( b t( χ Wχ )) SUS-3-8 SUS-3-3 L=9.5 /fb squark mass limits q q χ SUS-3-9 of L=9.5.6 /fb -. TeV t t χ + x =.5 t b( χ Wχ ) SUS-3- L=9.5 /fb x =.5 x =.75 t t b χ ( χ H G) SUS-3-4 L=9.5 /fb stop mass limits t ( t t χ ) Z up SUS-3-4 to SUS-3-4.7 L=9.5 TeV, /fb with much model dependence t ( t t χ ) H SUS-3-4 SUS-3-4 L=9.5 /fb b b χ SUS-3-8 L=9.4 /fb sbottom mass b tw limits χ SUS-3-8 up SUS-3-3 to L=9.5.8 /fb TeV b bz χ SUS-3-8 L=9.5 /fb ± χ χ lll ν χ χ SUS-3-6 L=9.5 /fb + x =.95 - + - χ χ l l ν ν χ χ SUS-3-6 L=9.5 /fb χ χ Z Z χ χ SUS-4- L=9.5 /fb ± χ χ W Z χ χ SUS-3-6 L=9.5 EWKinos mass χ χ H Z χ χ limits SUS-4- L=9.5 in /fbsome scenarios ± χ χ H W χ χ SUS-4- L=9.5 /fb ± x =.5 χ χ llτ ν χ χ SUS-3-6 L=9.5 /fb x =.5 x =.95 ± χ χ τττ ν χ χ SUS-3-6 L=9.5 /fb l l χ SUS-3-6 L=9.5 /fb Sleptons mass limits in some scenarios g qllν λ g qllν λ g qllν λ 3 33 g qbtµ λ ' 3 g qbtµ λ ' g qqb λ '' 33 3/3 g qqq λ '' g tbs λ '' 33 g qqqq λ '' q qllν λ q qllν λ 3 q qllν λ 33 q qbtµ λ ' 3 q qbtµ λ ' 33 q qqqq λ '' R t µ e ν t λ R t µ τν t λ R 3 t µ τν t λ R 33 t tbtµ λ ' R 33 Summary of CMS SUSY Results* in SMS framework m(mother)-m(lsp)= GeV SUS-4- L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb EXO--49 L=9.5 /fb EXO--49 L=9.5 /fb SUS-3-3 L=9.5 /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS--7 L=9. /fb SUS-3-3 L=9.5 9. /fb SUS-3-3 L=9.5 /fb RPV limits in many scenarios And a few modest discrepancies x =.5 x =.5 x =. x =.5 ICHEP 4 m(lsp)= GeV CMS Preliminary For decays with intermediate mass, = x m +(-x) m m intermediate 4 6 8 4 6 8 Mass scales *Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit mother lsp David Stuart, UCSB 9

Large increase in cross-sections at 3 TeV wrt 8 TeV Backgrounds increase by or 3 Stop and gluino cross-sections increase by 8-4. David Stuart, UCSB

Potentially large yields despite small luminosity With fb - would produce - events for.5 TeV gluinos.8 TeV squarks 9 GeV stops Sensitivity increase of O() GeV wrt Run M.Krämer & M.Muhlleitner, arxiv:5.6655 https://twiki.cern.ch/twiki/bin/view/lhcphysics/susycrosssections David Stuart, UCSB

Outline. Overview of strategy. Inclusive search in all-hadronic mode broad coverage 3. Gluino to top stop search in single lepton mode new methodology 4. Dilepton search, on Z or kinematic edge followup Run deviation David Stuart, UCSB

Strategy Search broadly in tails of kinematics and multiplicity. Optimized for the unknown. Search for specific production and decay modes. Optimized for specific scenarios. Background (SM) modeling well validated in the bulk, but unknown for the tails. Backgrounds typically from ttbar, W, and Z plus many jets and/or high pt. Signal would be a few orders of magnitude out on those tails. So measure tails in situ with minimal reliance on MC modeling. David Stuart, UCSB 3

Inclusive search targeting high multiplicity, energy, and/or MET. t b P g t P g b t χ χ P t g t t χ P g b b χ David Stuart, UCSB 4

Inclusive search targeting high multiplicity, energy, and/or MET. MET HT = sum pt(jets) SM backgrounds are dominantly: QCD multijet ttbar W+jets Z+jets Rare SM processes, e.g., ttz NJ & Nb Suppress them with combinations of these variables, so bin across them. Challenge is then all about predicting the backgrounds. David Stuart, UCSB 5

Inclusive search targeting high multiplicity, energy, and/or MET. MT MET HT = sum pt(jets) SM backgrounds are dominantly: QCD multijet ttbar W+jets Z+jets Rare SM processes, e.g., ttz NJ & Nb Suppress them with combinations of these variables, so bin across them. Challenge is then all about predicting the backgrounds. David Stuart, UCSB 6

QCD multijet background is difficult to predict. So hit it hard. Standard cuts, but keep MET cut small with MT. Cluster jets into two hemispheres, J and J, and calculate Events / 5 GeV 8 H T > GeV miss E > 3 GeV 7 T j, b 6 5 4 3 CMS Simulation Multijet Top quark W+jets Z νν pp g g, g bbχ m g = GeV m = GeV χ -.3 fb (3 TeV) 4 6 8 4 M T David Stuart, UCSB 7

QCD multijet background is difficult to predict. So hit it hard. Standard cuts, but keep MET cut small with MT. Cluster jets into two hemispheres, J and J, and calculate 5 575 45 Extreme H T High H T Medium H T Low H T Events / 5 GeV 8 H T > GeV miss E > 3 GeV 7 T j, b 6 5 4 3 CMS Simulation Multijet Top quark W+jets Z νν pp g g, g bbχ m g = GeV m = GeV χ -.3 fb (3 TeV) Very low H T 3 4 6 8 4 QCD multijet ends up being negligible, after a messy prediction. David Stuart, UCSB 8 M T

A few background processes, with mix varying across tails Main backgrounds are: Z invisible + jets Top or W + jets with missed leptons Neither has reliable MC modeling for kinematics (HT,Nj,Nb), but do trust decay BR and lepton efficiency. N b (p T > GeV) 3 CMS Supplementary (Simulation) arxiv:63.453 Multijet Top quark W+jets Z 3 4 5 6 7 N j (p T > 3 GeV) (3 TeV) H T [575, ] GeV David Stuart, UCSB 9

A few background processes, with unreliable modeling Main backgrounds are: Z invisible + jets Top or W + jets with missed leptons Events / 5 GeV 6 5 4 3 CMS Supplementary H T > GeV MET > GeV ( j, b) > GeV ( j, b ) M T arxiv:63.453 Data W+jets Top quark Multijet -.3 fb (3 TeV) Neither has reliable MC modeling for kinematics (HT,Nj,Nb), but do trust decay BR and lepton efficiency. Data/MC 4 6 8 4.5.5 H T David Stuart, UCSB

A few background processes, with unreliable modeling Main backgrounds are: Z invisible + jets Top or W + jets with lost leptons Neither has reliable MC modeling for kinematics (HT,Nj,Nb), but do trust decay BR and lepton efficiency. Events Data/MC 4 3 6 H T > GeV MET > GeV ( j, b) 5 M T > GeV ( j, b ).5.5 CMS Supplementary arxiv:63.453 Data W+jets Top quark Multijet -.3 fb (3 TeV) 4 6 8 4 N(jets) David Stuart, UCSB

A few background processes, with unreliable modeling Main backgrounds are: Z invisible + jets Top or W + jets with lost leptons Neither has reliable MC modeling for kinematics (HT,Nj,Nb), but do trust decay BR and lepton efficiency. Events Data/MC 5 4 3.5.5 CMS Supplementary j, lepton > GeV M T arxiv:63.453 Data Top quark W+jets Multijet -.3 fb (3 TeV) 3 4 5 6 N(b jets) David Stuart, UCSB

Top and W+jets background from lost-leptons Prediction for lost lepton contribution each MT bin is Normalize per kinematic bin (MT< to suppress signal contamination). Lepton efficiency (including taus) Extrapolation of MT shape bins in Nj and Nb: -3j * (b, b, b) 4-6j * (b, b, b) -6j * 3b 7j * (b, b, b, 3b) 5 575 45 For each Nj and Nb bin 3 45 6 8 David Stuart, UCSB 3

Uncertainty on background from MT extrapolation Events / Bin Vary the usual MC parameters: (PDF, renorm/factrz, W/top) Check MT shape in -lepton data Total MT shape uncertainty reaches 4% in highest bins Statistical uncertainty from -lepton CR reaches % 5 4 3 CMS j, b, lepton > GeV M T Data Top quark W+jets Multijet -.3 fb (3 TeV) Events / Bin 3 CMS j, b, lepton > GeV M T Data Top quark W+jets Multijet -.3 fb (3 TeV) Data/MC 4 6 8 4.5.5 M T Data/MC 3 4 5 6 7 8 9.5.5 M T David Stuart, UCSB 4

Z νν background measured with a γ+jets control sample. q Z ν ν q Z ν ν j j j j j j g j g j pt(γ)>8 MT> GeV David Stuart, UCSB 5

Z νν background measured with a γ+jets control sample. Photon purity CMS.95.9 -.3 fb (3 TeV) ) / γ ratio - l + Z(l CMS...8 Data Simulation -.3 fb (3 TeV).6.85.4.8..75.7 Data (fit) j, b MC purity 5 5 5 3 (photon removed) H T Data / MC.5.5 5 5 5 3 H T David Stuart, UCSB 6

Z νν background uncertainty determined similarly to W/top Compare also to MT distribution in a -lepton W sample. Fraction / Bin CMS -.3 fb (3 TeV) 575 < H T < GeV Z νν (MC) γ estimate (Data) W estimate (Data) Fraction / Bin CMS -.3 fb (3 TeV) < H T < 5 GeV Z νν (MC) γ estimate (Data) W estimate (Data) 3 3 Ratio to Z.5.5 4 6 8 4 M T Ratio to Z.5.5 4 6 8 4 M T David Stuart, UCSB 7

Results integrated over MT CMS -.3 fb (3 TeV) Entries 5 4 3 b Jet H [,45] GeV b T H T [45,575] GeV H T [575,] GeV Pre-fit background H T [,5] GeV H T > 5 GeV Data Multijet Lost lepton Z νν Data/Est. 3 [,5] [5,35] [35,45] [45,575] [575,7] [7,] > [,5] [5,35] [35,45] [45,575] >575-3j, b -3j, b -3j, b 4-6j, b 4-6j, b 4-6j, b 7j, b 7j, b 7j, b -6j, 3b 7j, 3b -3j, b -3j, b -3j, b 4-6j, b 4-6j, b 4-6j, b 7j, b 7j, b 7j, b -6j, 3b 7j, 3b -3j, b -3j, b -3j, b 4-6j, b 4-6j, b 4-6j, b 7j, b 7j, b 7j, b -6j, 3b 7j, 3b -3j, b -3j, b -3j, b 4-6j, b 4-6j, b 4-6j, b 7j, b 7j, b 7j, b -6j, 3b 7j, 3b -3j, b -3j, b -3j, b 4-6j, b 4-6j, b 4-6j, b 7j, b 7j, b 7j, b -6j, 3b 7j, 3b David Stuart, UCSB 8

Results for sample HT bin CMS -.3 fb (3 TeV) Entries 5 4 3 Pre-fit background [575, ] GeV -3j b -3j b -3j b 4-6j b 4-6j b 4-6j b 7j b H T 7j b 7j b Data Multijet Lost lepton Z νν -6j 3b 7j 3b Data/Est. 3 [,3] [3,4] [4,6] [6,8] >8 [,3] [3,4] [4,6] [6,8] >8 [,3] [3,4] [4,6] >6 [,3] [3,4] [4,6] [6,8] >8 [,3] [3,4] [4,6] >6 [,3] [3,4] [4,6] >6 [,3] [3,4] >4 [,3] [3,4] >4 [,3] [3,4] >4 [,3] [3,4] >4 [,3] [3,4] >4 David Stuart, UCSB 9

Results for nd highest HT bin CMS -.3 fb (3 TeV) Entries 5 4 3 Pre-fit background -3j b -3j b -3j b H T [, 5] GeV 4-6j b 4-6j b 4-6j b 7j b 7j b Data Multijet Lost lepton Z νν 7j b -6j 3b 7j 3b Data/Est. 3 [,4] [4,6] [6,8] [8,] > [,4] [4,6] [6,8] >8 [,4] >4 [,4] [4,6] [6,8] [8,] > [,4] [4,6] [6,8] >8 [,4] [4,6] >6 [,4] [4,6] >6 [,4] [4,6] >6 [,4] >4 [,4] >4 [,4] >4 David Stuart, UCSB 3

Results for highest HT bin CMS -.3 fb (3 TeV) Entries 5 4 3 Pre-fit background -3j b -3j b -3j b H T > 5 GeV 4-6j b 4-6j b 4-6j b 7j b 7j b Data Multijet Lost lepton Z νν 7j b -6j 3b 7j 3b Data/Est. 3 [,4] [4,6] [6,8] [8,] > [,4] [4,6] >6 > [,4] [4,6] [6,8] [8,] > [,4] [4,6] >6 [,4] [4,6] >6 [,4] >4 [,4] >4 [,4] >4 > > David Stuart, UCSB 3

Limits: global fit to signal strength across all 7 bins CMS -.3 fb (3 TeV) Entries 5 4 3 Post-fit background -3j b -3j b -3j b H T > 5 GeV 4-6j b 4-6j b 4-6j b 7j b Data Multijet Lost lepton Z νν pp g g, g bb χ m g =5 GeV = GeV m χ 7j b 7j b -6j 3b 7j 3b 3 [,4] [4,6] [6,8] [8,] > [,4] [4,6] >6 > [,4] [4,6] [6,8] [8,] > [,4] [4,6] >6 [,4] [4,6] >6 [,4] >4 [,4] >4 [,4] >4 > > David Stuart, UCSB 3

Squark limits q q P q χ P g q χ χ m 8 6 4 P CMS pp q q, q q χ one light q 4 6 8 4 David Stuart, UCSB q + q L -.3 fb Observed ± σ theory Expected ± σ experiment NLO+NLL exclusion ( u, R q d, s, c) (3 TeV) m q q χ 3 95% CL upper limit on cross section [pb] χ m 6 4 8 6 4 CMS P pp g g, g q q χ Observed ± σ theory Expected ±, σ -.3 fb (3 TeV) NLO+NLL exclusion experiment 6 8 4 6 8 g m g q q χ 3 95% CL upper limit on cross section [pb] 33

Sbottom limits b b P b χ P g b χ χ m 5 4 3 P CMS David Stuart, UCSB -.3 fb (3 TeV) 7 pp b b, b b χ NLO+NLL exclusion 6 Observed ± σ theory Expected ± σ experiment b 3 4 5 6 7 8 9 m b b χ 3 95% CL upper limit on cross section [pb] χ m 8 6 4 8 6 4 CMS P pp g g, g b b χ -.3 fb Observed ± σ theory Expected ± σ experiment (3 TeV) NLO+NLL exclusion 6 8 4 6 8 g m g b b χ 3 95% CL upper limit on cross section [pb] 34

Stop limits t t P t χ P g t χ χ m 5 45 4 35 3 5 5 5 P CMS David Stuart, UCSB m t = m t 3 4 5 6 7 8 9 χ + m -.3 fb pp t t, t t χ NLO+NLL exclusion Observed ± σ theory Expected ± σ experiment t m t t χ (3 TeV) 3 95% CL upper limit on cross section [pb] χ m 8 6 4 8 6 4 CMS P pp g g, g t t χ -.3 fb Observed ± σ theory Expected ± σ experiment (3 TeV) NLO+NLL exclusion 8 4 6 8 g m g t t χ 3 95% CL upper limit on cross section [pb] 35

Stop limits t SUS-5-3, arxiv:63:453 t P t χ P g t χ χ m 5 45 4 35 3 5 5 5 P CMS 3 4 5 6 7 8 9 David Stuart, UCSB m t = m t χ + m -.3 fb pp t t, t t χ NLO+NLL exclusion Observed ± σ theory Expected ± σ experiment t m t t χ (3 TeV) 3 95% CL upper limit on cross section [pb] χ m 8 6 4 8 6 4 CMS P pp g g, g t t χ -.3 fb Observed ± σ theory Expected ± σ experiment * * * * 8 TeV * limits * (3 TeV) NLO+NLL exclusion 8 4 6 8 g m g t t χ 3 95% CL upper limit on cross section [pb] 36

Search using MHT rather than MT. Background prediction similar. CMS -.3 fb (3 TeV) Events 5 4 3 4 N jet 6 7 N jet 8 N jet 9 N b-jet 3 Data Lost lepton Hadronic τ lepton Z νν QCD miss H T 9 8 7 6 HT-MHT bins Bin 6 Bin 4 Bin 5 (Obs.-Exp.) Exp. 3 4 5 6 7 Search region bin number 5 4 3 Bin Bin Bin 3 6 8 4 H T Other inclusive all-hadronic searches using other variables: alphat and razor. Also performed with many bins. David Stuart, UCSB 37

Search in the single lepton mode targeting gluino to top + stop P g t t t χ P g t t χ GeV isolated e/µ in gluino decays with 4 W ± t l mode: higher purity with small BR cost David Stuart, UCSB 38

Search in the single lepton mode targeting gluino to top + stop Baseline selection: One e/µ, pt > HT > 5 MET > njets 6, nb Leaves a single background process mt>4 leaves lost dilepton top David Stuart, UCSB Events/(35 GeV) Data / MC 5 4 3.5.5 CMS Preliminary L =. fb (3 TeV) Data g g, g tt χ (5,) g g, g tt χ (,8) tt, true lepton tt, true leptons ` t t - W+jets Single top ttv Other ` t t 4 6 mt m T 39

Search in the single lepton mode targeting gluino to top + stop Challenge is predicting the lost dilepton background at high m T for all kinematic regions (MET, n b, n j ) Predict dilepton background using single lepton events Using an event wide kinematic property that is the same for l and l events but differs for signal. David Stuart, UCSB 4

MJ = the sum of masses of fat jets (R=.) Larger for gluino decays due to boosted hadronic tops and accidental boost when partons randomly overlap. Di-lepton ttbar g! t t leptonic top m(j) GeV ISR jet m(j) GeV leptonic top m(j) GeV light jets b-jets leptonic top m(j) GeV Two hadronic tops m(j) mtop hadronic top m(j) mtop lepton David Stuart, UCSB 4

MJ = the sum of masses of fat jets (R=.) Larger for gluino decays due to boosted hadronic tops and accidental boost when partons randomly overlap. Cluster R=.4 jets and leptons into R=. jets with anti-kt algorithm. Naturally incorporates jet corrections. David Stuart, UCSB 4

MJ = the sum of masses of fat jets (R=.) Larger for gluino decays due to boosted hadronic tops and accidental boost when partons randomly overlap. Cluster R=.4 jets and leptons into R=. jets with anti-kt algorithm. Naturally incorporates jet corrections. MJ first suggested in pheno papers by Wacker, Cohen, and others, e.g., PRD 85,559 & JHEP3(3)6. First used in multijet search by ATLAS in e.g., PRD 9,6 Useful discussion with Ariel Schwartzman re: AK4 reclustering. David Stuart, UCSB 43

MJ = the sum of masses of fat jets (R=.) More sophisticated methods improve resolution for individual masses, but that is not the goal here. David Stuart, UCSB 44

An example event David Stuart, UCSB 45

An example event pt=468 GeV MET=373 GeV b-tag electron pt=7 GeV b-tag David Stuart, UCSB 46

An example event mj=54 GeV skinny jets pt=468 GeV mj= GeV skinny jet MET=373 GeV b-tag mj=897 GeV 6 skinny jets electron pt=7 GeV b-tag David Stuart, UCSB 47

MJ = the sum of masses of fat jets (R=.) Use an event wide kinematic property that is the same for l and l events but differs for signal. Top decay products have cutoff at *m(top), lower for l than for l. Random overlap of ISR jets dominates for high pt events, with similar shape for l and l. % events/(4 GeV) CMS Simulation gg, g tt χ (5,) tt, true lepton tt, true leptons ISR p T < GeV 3 TeV 4 6 8 M J David Stuart, UCSB 48

MJ = the sum of masses of fat jets (R=.) Use an event wide kinematic property that is the same for l and l events but differs for signal. Top decay products have cutoff at *m(top), lower for l than for l. Random overlap of ISR jets dominates for high pt events, with similar shape for l and l. % events/(4 GeV) CMS Simulation gg, g tt χ (5,) tt, true lepton tt, true leptons ISR p T < GeV 3 TeV % events/(4 GeV) CMS Simulation gg, g tt χ (5,) tt, true lepton tt, true leptons ISR p T > GeV 3 TeV 4 6 8 M J David Stuart, UCSB 4 6 8 M J 49

Measure mt shape at low MJ and normalize at high MJ Bkgnd predicted as m T 4 35 3 t t (l), ρ=.5 t t (l), ρ=.3 g g, g tt χ (5,) CMS Simulation R3 3 TeV R4 R(m T ) = NR3/NR R(MJ) = NR/NR 5 with MC correction factor of 5 5 4 6 8 R M J R Expect R(m T ) and R(M J ) to have small correlations, κ is their (double) ratio, insensitive to mis-modeling. David Stuart, UCSB 5

Measure mt shape at low MJ and normalize at high MJ Bkgnd predicted as R(m T ) = NR3/NR R(MJ) = NR/NR % events/(5 GeV) CMS Simulation tt, true lepton: m 4 GeV T tt, true leptons: m > 4 GeV T 3 TeV with MC correction factor of David Stuart, UCSB / Low m T High m T.5..5 Expect R(m T ) and R(M J ) to have small correlations, 5 5 κ is their (double) ratio, insensitive to mis-modeling. M J 5

Additional discrimination with nj, nb, and MET binning L =.3 fb Other QCD ttv Single t W+jets tt (`) tt (`) SM bkg. Ttttt(NC) No selection 3.3 `, p T > GeV.9 H T > 5 GeV 43.9 383.5 7.9 96.6 3885. 768.7 3357.8 483.4.9 ET miss > GeV 3.6 54.7 89. 457. 4343. 83.6 584. 8.3.5 N jets 6, p T > 3 GeV 7.3 8. 36.8 8.8 78.7 79.3 7.4 397.4 9.6 N b 9.4.7 9.6 63.9 66.3 63. 37.4 94.4 9. M J > 5 GeV 6.7.6.6 43.8 46. 455. 87. 664. 9. m T > 4 GeV.7.4 3. 3.5. 5.5 3.5 47.9 7. M J > 4 GeV.4.8..4.6.8 9.7 6.7 6.4 N b.6.4.55.68..9 4.5 7.4 4.87 ET miss > 4 GeV....3..7.7.4 3.6 N jets 9, p T > 3 GeV...3.....6.64 Need to predict signal region (R4 = high m T & high M J ) for each n j, n b, MET bin. Signal David Stuart, UCSB 5

Additional discrimination with nj, nb, and MET binning.5. CMS Simulation N b N b N b = = 3 M 4 GeV > 4 GeV J M J 3 TeV R(m T ).5..5 Baseline selection Baseline selection 4 5 6 7 8 9 4 5 6 7 8 9 MC predicts that R(m T ) and R(M J ) are at most weakly dependent on n j and n b, O(%) for n j >5. N jets David Stuart, UCSB 53

Background prediction with nj, nb, and MET binning mt 4 5 4 MJ David Stuart, UCSB 54

MC correction factors for each nj, nb, and MET binning CMS Simulation N b = N b = N 3 b N b 3 TeV.5 κ.5 miss T miss T miss T miss E T E 4 E > 4 E 4 > 4 6 8 9 N jets N jets - % corrections David Stuart, UCSB 55

Systematic uncertainties Validate the background estimation method using ttbar events with two reconstructed leptons Replace R3 & R4 (mostly dilepton ttbar with a lost lepton) by D3 & D4 which have two reconstructed leptons. ( D for dilepton). In D3 and D4: Require MET<4 GeV and n b to reduce signal contamination. Shift n jets requirement down by to have same number of objects in fat jet clustering. David Stuart, UCSB 56

Systematic uncertainties M J shapes consistent for R & R vs D3 & D4 Observed dilepton yields consistent with prediction Use precision of test as systematic uncertainty David Stuart, UCSB 57

Systematic uncertainties Validate the background estimation method using ttbar events with two reconstructed leptons Other smaller uncertainties determined by MC variation. Source Fractional uncertainty [%] Data sample size 8 8 Dilepton control sample test 37 88 Simulation sample size 5 7 Jet energy resolution Jet energy corrections 5 ISR p T 5 Top p T 4 Non-tt background David Stuart, UCSB 58

Results nb= nj 6 MET Predict 6.6±.5 Observe 8 David Stuart, UCSB 59

Results nb nj 6 MET Predict 5.6±.8 Observe David Stuart, UCSB m T 6 5 4 3 Data g g, g tt χ (5,) - CMS.3 fb (3 TeV) 4 6 8 M J ) Simulated events/(8 GeV 6

Results Region: bin k Ttttt(NC) Ttttt(C) Fitted µ bkg (PF) Fitted µ bkg (GF) Obs. < ET miss apple 4 GeV R: all N jets, N b. 3. 336. ± 8.3 335.3 ± 8. 336 R: 6 apple N jets apple 8, N b =.. 47. ± 6.9 49.5 ± 6.9 47 R: N jets 9, N b =..3 7. ±.6 7.5 ±.7 7 R: 6 apple N jets apple 8, N b =..3 4. ± 6.5 4. ± 6. 4 R: N jets 9, N b =..5 7. ±.6 6.6 ±.5 7 R: 6 apple N jets apple 8, N b 3... ± 3.5. ± 3. R: N jets 9, N b 3..6. ±..9 ±.9 R3: all N jets, N b. 3.8. ± 4.6.6 ± 4. R4: 6 apple N jets apple 8, N b =. ±.9 ±.43.. 3.3 ±.4 3.6 ±. 6 R4: N jets 9, N b =.9 ±.6 ±.8..4.4 ±.3.4 ±. R4: 6 apple N jets apple 8, N b =. ±.6 ±.4.3.4.9 ±..9 ±.8 R4: N jets 9, N b =.5 ±. ±.94.3.6.5 ±.3.4 ±. R4: 6 apple N jets apple 8, N b 3.5 ±. ±.47.3.3.9 ±.4.9 ±.3 R4: N jets 9, N b 3.5 ±. ±.93.3.7. ±.. ±. ET miss > 4 GeV R: all N jets, N b..5 6. ± 4. 7. ± 4. 6 R: 6 apple N jets apple 8, N b =.. 8. ±.8 6.8 ±.5 8 R: N jets 9, N b =... ±..7 ±. R: 6 apple N jets apple 8, N b.5.3 3. ±.7.5 ±.4 3 R: N jets 9, N b.4.6. ±..9 ±.9 R3: all N jets, N b.4.9 4. ±..9 ±.4 4 R4: 6 apple N jets apple 8, N b =.9 ±.6 ±.4.7.. ±.7. ±.7 R4: N jets 9, N b =.98 ±.6 ±.87.4.3. ±.3.3 ±. R4: 6 apple N jets apple 8, N b.9 ±. ±.5.9.5. ±.8.5 ±.4 R4: N jets 9, N b.9 ±.4 ±.8.6.. ±.3. ±. David Stuart, UCSB 6

Limits P P P P g g g g t t t t t t t t χ χ t t χ χ χ m 8 6 4 8 6 4 CMS pp g g, g t t χ -.3 fb Observed ± σ theory Expected ± σ experiment (3 TeV) NLO+NLL exclusion 8 4 6 8 m g 3 95% CL upper limit on cross section [pb] David Stuart, UCSB 6

Limits t - CMS.3 fb (3 TeV) P g t t χ χ m SUS-5-7, arxiv:65:468 pp pp g g, g t t χ g g+ t g, t t, t t t χ (m t Observed - m χ = 75 GeV) Expected P g t t χ 8 t 6 T5ttttDM75: an extreme scenario 4 m gluino m stop m LSP 75 GeV 6 8 4 6 David Stuart, UCSB 63 m g Compressed stop decay degrades kinematic efficiency. For mlsp, LSP s have no momentum so only lost dilepton signal events pass MET & mt selection.

Opposite sign dilepton search b l + b b χ χ l Z ( ) b f l χ χ f I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Söderqvist, and W. Yao, PRD.55.55, 997 David Stuart, UCSB 64

Opposite sign dilepton search MET (5) & nj 3() Events / 5 GeV 8 6 4 8 6 - CMS 9.4 fb (8 TeV) Data Fit FS DY Signal SF central leptons Flavor symmetric background Efficiencies measured in high stats Z ee & µµ samples 4 Pull 3 - - -3 5 5 5 3 m ll 5 5 5 3 m ll David Stuart, UCSB 65

Opposite sign dilepton search MET (5) & nj 3() Events / 5 GeV CMS - 9.4 fb (8 TeV) 8 6 4 8 6 Data Fit OF central leptons Flavor symmetric background Efficiencies measured in high stats Z ee & µµ samples 4 Pull 3 - - -3 5 5 5 3 m ll 5 5 5 3 m ll David Stuart, UCSB 66

Opposite sign dilepton search MET (5) & nj 3() Events / 5 GeV Pull 8 6 4 8 6 4 3 - CMS 9.4 fb (8 TeV) Data Fit FS DY Signal SF central leptons 5 5 5 3 m ll Flavor symmetric background Efficiencies measured in high stats Z ee & µµ samples Drell-Yan like background MET templates from γ+jets - - j j -3 5 5 5 3 j j m ll j j g g David Stuart, UCSB 67 q Z j ν ν q Z j ν ν

Opposite sign dilepton search MET (5) & nj 3() Events / 5 GeV 8 6 4 8 6 4 3 - CMS 9.4 fb (8 TeV) Data Fit FS DY Signal SF central leptons 5 5 5 3 m ll Excess in < m < 7 73 ± 4 predicted vs 86 observed.6 σ (local) deviation Pull - - -3 5 5 5 3 m ll David Stuart, UCSB 68

Opposite sign dilepton search: identical 3 TeV repeat Events / GeV 3 5 5 CMS Preliminary Central signal region Data -. fb (3 TeV) Total backgrounds Drell--Yan Total uncert. 5 Data / Bgnd.5.5 David Stuart, UCSB 5 5 5 3 Systematic uncert. m ll 69

Opposite sign dilepton search: identical 3 TeV repeat Events / GeV Data / Bgnd 3 5 5 5.5.5 CMS Preliminary David Stuart, UCSB Central signal region Data Total backgrounds Drell--Yan Total uncert. Scaled 8 TeV signal fit: -. fb (3 TeV) = 3 GeV hypothesis 5 5 5 3 Systematic uncert. m b m b m b = 5 GeV hypothesis = 7 GeV hypothesis m ll 8 TeV excess not confirmed. Red distributions model shape and scaled size of 8 TeV excess for three different sbottom mass hypotheses. 7

Opposite sign dilepton search, on-z Events /.5 GeV Njets, MET > 5 GeV HT+pT+pT > 6 GeV, On-Z: 8 < mll < GeV min(δφmet, j, ΔΦMET, j) >.4 4 ATLAS 8 - s = 8 TeV,.3 fb SR-Z ee Data Standard Model Flavour Symmetric Other Backgrounds m( g),µ=(7,)gev m( g),µ=(9,6)gev Events /.5 GeV ATLAS - s = 8 TeV,.3 fb 8 9 events observed with BG of.6 ± 3. 3σ SR-Z µµ EPJC 75 (5) 38 Data Standard Model Flavour Symmetric Other Backgrounds m( g),µ=(7,)gev m( g),µ=(9,6)gev 6 4 6 4 8 84 86 88 9 9 94 96 98 8 84 86 88 9 9 94 96 98 David Stuart, UCSB m ll m ll 7

Opposite sign dilepton search, on-z Njets, MET > 5 GeV HT+pT+pT > 6 GeV, On-Z: 8 < mll < GeV min(δφmet, j, ΔΦMET, j) >.4 observed.3 ±. BG..σ ATLAS-CONF-5-8 David Stuart, UCSB 7

Opposite sign dilepton search, on-z Njets, MET > 5 GeV HT+pT+pT > 6 GeV, On-Z: 8 < mll < GeV min(δφmet, j, ΔΦMET, j) >.4 Events/5 GeV 3 data MET Templates FS background Other SM CMS Preliminary Σ p T (lep φ(e, miss T -. fb (3 TeV) )+ H T, (jet > 6 GeV )) >.4, N jets observed.3 ±. BG..σ obs ATLAS-CONF-5-8 5 5 5 3 35 miss David Stuart, UCSB E T GeV 73 Data Prediction.5.5 CMS-SUS-5- ± 3 BG

6 running 7RtDl IntHJUDtHd LumLnRsLty (pb ) 8 6 4 David Stuart, UCSB 8 6 4 C6,ntegrated LumLnoVLty, SS, 6, p s = 3 TeV DDtD included fuop 6-4- :48 to 6-6- :6 8TC PUeliPinDUy LHC DHlLvHUHd: 736. pb C6 5HcRUdHd: 59. pb 3 ASU 6 ASU 9 ASU Dy 5 Dy 8 Dy Dy 4 Dy 7 Dy Dy 3 Dy 6 Dy 9 Dy Jun DDtH (87C) 8 6 4 8 6 4 74

6 running fb - fb - 3 fb - David Stuart, UCSB 75

Conclusion: Not yet, but not done. Recent CMS SUSY searches, David Stuart, UCSB 76

Conclusion: Not yet, but not done. 3 TeV 3 TeV 7 TeV 8 TeV Recent CMS SUSY searches, David Stuart, UCSB 77

Conclusion: Not yet, but not done. 3 TeV 3 TeV 7 TeV 8 TeV Recent CMS SUSY searches, David Stuart, UCSB 78

Acknowledgements Funded by: and Citation for multimedia used: and references therein.