Miscellaneous open problems in the Regular Boundary Collocation approach

Similar documents
CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

Instructions for Section 1

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

TOPIC 5: INTEGRATION

AS 5850 Finite Element Analysis

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Multi-Section Coupled Line Couplers

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Finite element discretization of Laplace and Poisson equations

Walk Like a Mathematician Learning Task:

Derivation of Eigenvalue Matrix Equations

ELASTOPLASTIC ANALYSIS OF PLATE WITH BOUNDARY ELEMENT METHOD

VSMN30 FINITA ELEMENTMETODEN - DUGGA

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

ME311 Machine Design

Journal of System Design and Dynamics

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Design/Modeling for Periodic Nano Structures t for EMC/EMI. Outline

Errata for Second Edition, First Printing

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

HIGHER ORDER DIFFERENTIAL EQUATIONS

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Dynamic Characteristics Analysis of Blade of Fan Based on Ansys

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

Laboratory work # 8 (14) EXPERIMENTAL ESTIMATION OF CRITICAL STRESSES IN STRINGER UNDER COMPRESSION

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

NONLINEAR ANALYSIS OF PLATE BENDING

Errata for Second Edition, First Printing

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules.

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

Einstein Equations for Tetrad Fields

3 Finite Element Parametric Geometry

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Chapter 3 Fourier Series Representation of Periodic Signals

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

Ch 1.2: Solutions of Some Differential Equations

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

CIE4145 : STRESS STRAIN RELATION LECTURE TOPICS

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Last time: introduced our first computational model the DFA.

The Implementation of Finite Element Method for Poisson Equation

Solution of Assignment #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

Direct Approach for Discrete Systems One-Dimensional Elements

Communication Technologies

1 Isoparametric Concept

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS

Elements of Statistical Thermodynamics

The pn junction: 2 Current vs Voltage (IV) characteristics

2008 AP Calculus BC Multiple Choice Exam

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

arxiv: v1 [math.na] 3 Mar 2016

CBSE 2015 FOREIGN EXAMINATION

(Upside-Down o Direct Rotation) β - Numbers

Addition of angular momentum

A Uniform Approach to Three-Valued Semantics for µ-calculus on Abstractions of Hybrid Automata

Combinatorial Networks Week 1, March 11-12

L 1 = L G 1 F-matrix: too many F ij s even at quadratic-only level

16. Electromagnetics and vector elements (draft, under construction)

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

Abstract Interpretation: concrete and abstract semantics

Higher-Order Discrete Calculus Methods

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

( ) Abstract. 2 FEDSS method basic relationships. 1 Introduction. 2.1 Tensorial formulation

I. The Connection between Spectroscopy and Quantum Mechanics

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

WORKSHOP 6 BRIDGE TRUSS

Lecture 6 Thermionic Engines

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

Continuous probability distributions

Unfired pressure vessels- Part 3: Design

Learning Spherical Convolution for Fast Features from 360 Imagery

That is, we start with a general matrix: And end with a simpler matrix:

4.2 Design of Sections for Flexure

Chem 104A, Fall 2016, Midterm 1 Key

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

On spanning trees and cycles of multicolored point sets with few intersections

Garnir Polynomial and their Properties

Basic Polyhedral theory

ENGI 3424 Appendix Formulæ Page A-01

Supplementary Materials

Another view for a posteriori error estimates for variational inequalities of the second kind

Floating Point Number System -(1.3)

Elliptical motion, gravity, etc

Floating Point Number System -(1.3)

Transcription:

Miscllnous opn problms in th Rgulr Boundry Colloction pproch A. P. Zilińsi Crcow Univrsity of chnology Institut of Mchin Dsign pz@mch.p.du.pl rfftz / MFS Confrnc ohsiung iwn 5-8 Mrch 0

Bsic formultions on simpl xmpl Lplc qution with Dirichlt conditions ϕ ϕ ( x y) 0 ( x y) Ω ( x y) f ( x y) ( x y) f ( x y) rgulr on () () Boundry Vlu Problm ( ) ˆ ϕ( ) ( ) ϕ x y x y x y { {... }... } (3) - rfftz tril functions fulfilling homognous qution insid Ω including

rfftz-typ tril functions ( x y) H - Hrrr functions: complt sts of rgulr solutions of Eq.() (for opn rs Ω singulrity in cntrl point ( 0. 0 0. 0) ) ( x y) - uprdz functions: fundmntl solutions with singulritis outsid Ω ( x y) O - othr rfftz functions:.g. fundmntl solutions xpndd into Fourir sris or in fuzzy form (singulrity xtndd to finit r) Rmr: functions ( x y) singulr on (s BEM) in th rfftz pproch r xcludd. Opn problms: mixd-typ rfftz functions loction of singulritis of fundmntl solutions 3

4 Bsic formultions on simpl xmpl simplst orthogonliztion (othr wighting functions possibl) ( ) min ˆ ϕ d f d f I ( ) d f I 3 0 0 ˆ ϕ d f d 3 (4) (6) (5)

Numricl intgrtion ~ h L nottion ( x y) d h ( s) ds α Lh( x L y L ) h( x y) s s α ~ L L L α L s s L L ( x y ) L L [ ] (7) L - sgmnts of α ~ ( x y ) - pur wights of intgrtion - control points of intgrtion on 5

Numricl intgrl formultion nottion ( ˆ ϕ f ) d min ( ˆ ϕ f ) min M M (8) α α f 3 (9) ( x y ) ( x y ) α - control points of intgrtion on - wights of intgrtion Mor gnrl: boundry colloction ( ˆ ϕ f ) min (0) M ν M ν ν β β f ( x y ) ν ν ( x ν y ν ) ν ν ν - control points of colloction on ν ν ν () βν - wights of colloction 6

Numricl boundry formultion Opn problm: choic of β nd ( x ) ν ν y ν β ν α ν ( x ν y ν ) - control points of intgrtion on Numricl intgrl spcific cs of boundry colloction Exmpls of control points of colloction long : Conclusion: proposd gnrl nm - qudistnt points - Gussin points - Lobtto points. rfftz Mthod MFS Rgulr Boundry Colloction Mthod 7

Spcific cs of boundry colloction: M Forml intgrl nottion: M - numbr of control points ( ˆ ϕ f ) δ ( x x ) d 0 () slcting proprty of δ ( x x ) 3M ( x y ) β β f 3 M Intrpoltion; hv no influnc on rsults β (3) Mtrix nottion for M : B f B - squr mtrix Cs: M > B B B f lst squr 8

Intgrl cs: ( ˆ ϕ f ) d 0 3 (4) M M M > - numbr of intgrl control points - intrpoltion; intgrl wights do not influnc rsults - ovrdtrmind lst squr M < - pproximtion undrdtrmind 9

Gnrl form of colloction Dirct wighting ϕ ν ( ˆ f ) 0 3 (5) Opposit wighting ν n ( ˆ ϕ f ) n 0 3 - outwrd norml to (6) Attntion: H const ncssry dditionl qution Opn problm: othr typs of wighting functions 0

Mixd Dirichlt-Numn boundry conditions ( ) ( ) g n W f g n W f 3 0 ˆ ˆ min ˆ ˆ ϕ ϕ ϕ ϕ Opn problm: choic of W (7) (8)

Mixd Dirichlt-Numn boundry conditions g W f i i i i i i 3 0 W i i i i 3 trms trms If trms >> trms condition on will not b fulfilld n (9)

3 Opposit wighting: ( ) g n f ˆ ˆ 0 ϕ ϕ - wight not ncssry - symmtric stiffnss mtrix (pproximtly) - possibility of ngtiv dfinit mtrics ( ) g n f ˆ ˆ 0 ϕ ϕ P. Ldvz Ch.Hochrd - nonsymmtric mtrics (0) ()

Numricl xmpl u( x y) N n 0 8 cos Singulr mmbrn problm. [( n ) π x ( ) ] cosh[ ( n ) π y ( ) ] ( n ) π cosh[ ( n ) π ] N ( in th xmpl N 00) () 4

Numricl xmpl: singulr mmbrn problm. Position of singulritis of fundmntl solutions (uprdz functions) 5

Numricl xmpl: singulr mmbrn problm. 6 U 0.7 y C u x ε cond 0.3 δ u δ u H EX u u u EX c 0.6 0.5 u 0 n U conv u0 u0 B x U H ε cond δ u 0.4 0.6 0.08 0.00 7.5E-3 5.0E-3.5E-3 δ u U ε EX cond N H EX ui ui N i EX N uc N i u Ω x mx ( H i EX H) ii u y EX δ u i dω 0.5 U 0.4.5.5 κ 0.0E0 6

Numricl xmpl: singulr mmbrn problm. 4 U 0.7 y C u x ε cond 0.3 δ u δ u H EX u u u EX c 0.6 0.5 u0 u0 u B x 0 n ε cond ε U H U conv δ u 0.4 0.6 0.08 0.00 7.5E-3 5.0E-3.5E-3 δ u U ε EX cond N H EX ui ui N i EX N uc N i u Ω x mx ( H i EX H) ii u y EX δ u i dω 0.5 U 0.4.5.5 κ 0.0E0 EX u c.0 7

Numricl xmpl: singulr mmbrn problm. δ u N H EX ui ui i EX N uc N N i δ u i 8

Numricl xmpl: singulr mmbrn problm. γ U N N i γ Ui 9

0 Numricl xmpl: D lsticity ( ) ( ) xy E A y x u EX ( ) ( ). ν ν υ y x E A y x EX ( ) ( ) ( ) ( ) EX C EX C EX H EX H u u u u υ υ υ δ N i u i u N δ δ ( ) ( ) ( )( ) ( )( ) U E EX EX EX xy H xy EX y H y EX x H x EX y H y EX x H x EX U ρ τ τ ν σ σ σ σ ν σ σ σ σ ρ γ N i U i U N γ γ E - Young modulus ν - Poisson rtio Enrgy dnsity rror

Numricl xmpl: D lsticity ε cond ε cond ε cond ε cond

Numricl xmpl: D lsticity

Coupling of two subrgions orsion of br md of diffrnt mtrils Cross-sction of n lliptic br md of two diffrnt mtrils xmpl 3

Coupling of two subrgions orsion of br md of diffrnt mtrils G φ β ( x y) Ω G ψ β 0 ( x y) Ω ( x y) φ ψ 0 ( x y) φ ψ G φ n G ψ n ( x y) c β - ngl of twist pr unit br lngth ϕ ψ - Prndtl functions G G - irhchoff moduli 4

5 Coupling of two subrgions orsion of br md of diffrnt mtrils ( ) 0 3 c c d G G W W d W ψ φ ψ φ φ ˆ ˆ ˆ ˆ ˆ ) ( ) ( ) ( ( ) 0 6 5 4 ψ φ ψ φ ψ d W d W G G W c c ˆ ˆ ˆ ˆ ˆ ) ( ) ( ) ( p φ φ ˆ p ψ Ψ ψ ˆ p n φ φ φ ˆ ˆ p n ψ Ψ ψ ψ ˆ ˆ p p ψ φ prticulr solutions of nonhomognous qutions

6 Coupling of two subrgions orsion of br md of diffrnt mtrils W W ) ( ) ( G W 3 ) ( W W Ψ ) ( ) ( 6 5 G W Ψ 4 ) ( f d G d d G G d G G d G d c c c c c c c c c c c c Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ

Coupling of two subrgions orsion of br md of diffrnt mtrils ) b) Dirct coupling of th two hlf-lliptic rgions strss function G3.0 G.0 Hrrr functions ) 3; b) 9; 7

8 Coupling of two subrgions orsion of br md of diffrnt mtrils Dirct coupling of th two hlf-lliptic rgions rsulting strsss G 3.0 G.0: Hrrr functions ) 3; b) 9; c) 9 cross-sction c) ) b) x x ϕ ϕ τ τ

Coupling of mny subrgions (lmnts) J. Jirous 994 Exmpl: Lplc qution J [ ] ' ' ( ) ( ˆ ϕ ϕ ) d W ( ˆ ϕ) ( ϕ ) ϕ I qn d ' ' ( ˆ ϕ ˆ ϕ ) d W ( ˆ ) ( ˆ I ϕ n ϕ ) I ϕn n I n [ ] d min n ˆϕ ( x y) ( ) ' n - rfftz solution in ch subrgion ϕ - givn on ϕ ϕ - givn on qn ( ) ˆ ϕ( ) ( ) ϕ x y x y x y { {... }... } - rfftz tril functions fulfilling homognous qution insid Ω including 9

Coupling of mny subrgions 6 I ϕˆ ϕˆ I 3 I 5 I ϕˆ 3 33 3 I 34 I prts of boundris of subrgions bcom lmnts of intgrtion 30

3 Coupling of mny subrgions W b [ ] [ ] [ ] [ ] 3 3 3 3 3 3 3 3 3 3 3 3 W W W W c ( ) ( ) 0 R δ δ δ J J ( ) ( ) N J J δ δ ( ) ( ) ( ) p J J r r δ δ δ δ p r r

Numricl xmpl (J. Jirous A. Wróblwsi 994): Comprssion of prfortd pnl Convntionl p-lmnt msh 3 DOF (p5) -lmnt msh 8 DOF (p9) 3

Numricl xmpl: comprssion of prfortd pnl 33

Numricl xmpl: comprssion of prfortd pnl 34

Numricl xmpl: comprssion of prfortd pnl 35

Hybrid-rfftz displcmnt p-lmnt (H-D) J. Jirous 977-998 ~ u ~ (x) x N(x) x d x u( ) ( ) ~ m N ~N ξ m N ~ ξ( ξ ) m ξ ( ξ ) 3 LLLLLLL fixd numbr of DOF optionl numbr ( M ) of DOF u(x) u p (x) N(x)c N mtrix of x Ω rfftz functions t(x) t p (x) (x)c x 36

-complt systm for D lsticity u u v u v p p l N N m u m v c m N N N m m m 3 m Nu m Nv R Z Im Z R Z ImZ 3 3 R Z ImZ Z ( 3 ν) iz ( ν) iz z Z ( 3 ν) z ( ν) zz Z Z 3 4 N m 4 R Z Im Z 4 4 ( ν) iz ( ν) z. whr: z x iy z x iy 0... (notic: for 0 thr r only indpndnt functions) 37

-complt systm for plt bnding problm D 4 w p w w p l N b w c b b N r R z b N r Im z b R z N 3 b Im z N 4 0 whr: r x y z x iy 38

Elmnt of H-D typ Fitting of intrnl solution to frm δt δt (uu) ~ d0 δ ~ c 0 ( u u) d c c ( d) Equivlncy of wirtul wor δ u~ t d δ u~ t d δ d t r r r p d G H G symmtric stiffns mtrix d vctor of dgrs of frdom 39

Elmnt of H-LS typ Fitting of intrnl solution to frm u u~ d min u ( ) c c ( d) Equivlncy of wirtul wor δ u t d δ u t d δ d r t r r p F HF d symmtric stiffns mtrix d vctor of dgrs of frdom 40

Diffrnt typs of spcil purpos -lmnts ) b) s Ω s Ω c) d) s Ω s Ω 4

Foldd plt structur tst for -lmnt fturs -lmnts: N AC 456 ANSYS: N AC 98 A A Z Y X B C C F F Y X Z Lodings: xtrnl prssur nd nodl forcs: on top pnl p y -0.5 [N/mm ] -shp plt with circ.hol(d/b 0.60) E on bottom pnl p y 0.5 [N/mm ] in point E F x -00 [N] F z 500 [N] in point F F x 00 [N] F z -500 [N] 4

Rsults of tsts for H-D lmnt - distribution of circumfrntil strssss long lins AB nd CD σ θ 40 40 30 Ansys -lmnt B C Ansys -lmnts 0 0 σθ σθ 0 0 0 A D -0-0 0 0 0 30 40 60 70 80 90 00 43

σr Rsults of tsts for H-D lmnt - rdil strsss long lins AB CD σ r 4 -lmnts Ansys -lmnts Ansys 0 B 0 C - σ r -4-4 -8-6 A D -8-0 0 0 30 40 60 70 80 90 00 Mx. nd min. vlu of rdil strss σ r in [MP] long th boundry of th hol ANSYS -lmnts min σ -0.548 3 rr 0 mx σ 0.409 3 rr 0 44

Simply supportd t both nds plt girdr with 6 circulr opnings Y st sction of pnls Z X Msh of -lmnts nd sction of pnls Z Y X 3 rd sction of pnls Locl msh rfinmnt introducd in th vicinity of hols Exmplry msh in ANSYS 45

hn you for your ttntion! 46