Patrick Peter. Méthodes Mathématiques pour la Relativité Générale LUTh - Meudon 2 octobre Courants multiples dans les cordes cosmiques

Similar documents
Cosmic and superconducting strings

Challenges for hybrid inflation : SUSY GUTs, n s & initial conditions

From HEP & inflation to the CMB and back

Cosmic Strings. Joel Meyers

Gravitational Waves. Cosmic Strings

Cosmic Strings and Topological Defects

Physics Spring Week 6 INFLATION

OLD AND NEW PROCESSES OF VORTON FORMATION

Scalar field dark matter and the Higgs field

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Detecting Cosmic Superstrings

Cosmic strings and gravitational waves

Supercurrents. Nathan Seiberg IAS

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Cosmic superstrings. New Views of the Universe: Chicago - Dec

Gravitational waves from the early Universe

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

PROBLEM SET 10 (The Last!)

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Inflation from supersymmetry breaking

High Scale Inflation with Low Scale Susy Breaking

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

The stability of the wall is due to the potential and the gradient balancing each other (Derrick s Theorem). Simple argument: = E grad

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Non-singular quantum cosmology and scale invariant perturbations

How I learned to stop worrying and love the tachyon

The discrete beauty of local GUTs

Introduction to Chern-Simons forms in Physics - I

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

Cosmic Strings and Their Possible Detection in the Near Future

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

Bielefeld - 09/23/09. Observing Alternatives to Inflation. Patri Pe r. Institut d Astrophysique de Paris. Bielefeld - 23 rd september 2009

arxiv:hep-th/ v1 5 May 1999

Cosmic Strings. May 2, Safa Motesharrei University of Maryland

Field Theory: The Past 25 Years

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

Inflation in heterotic supergravity models with torsion

Holographic study of magnetically induced ρ meson condensation

BRANE COSMOLOGY and Randall-Sundrum model

Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010

Phase transitions in separated braneantibrane at finite temperature

Entropy of asymptotically flat black holes in gauged supergravit

Inflation and cosmic (super)strings: implications of their intimate relation revisited

Cosmological Signatures of Brane Inflation

Triple unification of inflation, dark matter and dark energy

Decay of the Higgs condensate after inflation

GUTs, Inflation, and Phenomenology

Topology of the Electroweak Vacua

Crosschecks for Unification

Searching for Cosmic Superstrings in the CMB

Beyond the SM, Supersymmetry

Massive Photon and Cosmology

SISSA entrance examination (2007)

Light hidden U(1)s in LARGE volume string compactifications

What ideas/theories are physicists exploring today?

String Theory Compactifications with Background Fluxes

Gauge Threshold Corrections for Local String Models

Theory and phenomenology of hidden U(1)s from string compactifications

Asymptotically free nonabelian Higgs models. Holger Gies

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

The Physics of Heavy Z-prime Gauge Bosons

CMB, Phase Transitions, and Cosmic Defects Lecture 15 - Friday Mar 7

Supersymmetry, Dark Matter, and Neutrinos

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Dark inflation. Micha l Artymowski. Jagiellonian University. December 12, 2017 COSPA arxiv:

Particles and Strings Probing the Structure of Matter and Space-Time

Large Extra Dimensions and the Hierarchy Problem

Quintessence - a fifth force from variation of the fundamental scale

Cosmic Superstrings. 1. Brief review of cosmic strings. 2. Why cosmic superstrings. 3. Modelling strings with junctions.

References. S. Cacciatori and D. Klemm, :

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap

Scale-invariant alternatives to general relativity

Dissipative and Stochastic Effects During Inflation 1

The Stueckelberg Extension and Extra Weak Dark Matter

New Insights in Hybrid Inflation

M-Theory and Matrix Models

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

The Matter-Antimatter Asymmetry and New Interactions

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

D-brane instantons in Type II orientifolds

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

Gravitino LSP as Dark Matter in the Constrained MSSM

12.2 Problem Set 2 Solutions

The Standard model Higgs boson as the inflaton

Symmetries Then and Now

Naturalizing SUSY with the relaxion and the inflaton

Grand Unification and Strings:

Inflationary particle production and non-gaussianity

Beyond the Standard Model

PROBLEMS OF VACUUM ENERGY AND DARK ENERGY A.D. Dolgov

Spacetime Quantum Geometry

Geometry and Physics. Amer Iqbal. March 4, 2010

Introduction to Orientifolds.

The θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18

PROBLEM SET 10 (The Last!)

Transcription:

Méthodes Mathématiques pour la Relativité Générale LUTh - Meudon 2 octobre 2009 Courants multiples dans les cordes cosmiques Patrick Peter Institut d Astrophysique de Paris

GUT SUSY SUSY

A simple example: SO(10) SO(10) 4 C 2 L 2 R 1 1 1 1 1 2 3 C 2 L 2 R 1 3 B-L C 2 L 1 R 1 B-L G SM Z 2 2 G SM Z 1 2 2 3 C 2 L 1 R 1 B-L G Z SM 2 4 C 2 L 1 R 2 G SM Z 2 3 C 2 L 1 R 1 B-L 2 G SM Z 2 G SM Z 2 1: Monopoles 2: Cosmic strings INFLATION SO(10) : 34 possible schemes E6 : 1024 R. Jeannerot, J. Rocher & M. Sakellariadou, PRD 68, 104514 (2003) 3

Higgs field and potential V (φ) T T crit T T crit φ

General symmetry breaking G H Vacuum manifold: G/H Defect classification π 0 (G/H) (T. Kibble) Domain walls Ω 10 8 for E 100 GeV π 1 (G/H) Cosmic strings Ω 10 6 for E E GUT π 2 (G/H) Monopoles Inflation... π 3 (G/H) Textures ΔT/T...

Phase transition ξ Correlation length 0 φ( x)φ( x + r) 0 e r /ξ

Abelian Higgs model L a.h = D µ φd µ φ 1 4 C µνc µν V (φ) φ = f(r)e inθ (r)

Localized energy / axis Interaction...

Reconnexion (intercommutation) Simulations : P. Shellard (DAMTP - Cambridge)

Radiation Oscillations Axions, h +,... h

Not so exotic objects...

Initial conditions: random phases + Evolution... l αt Scaling! ρ = ζ U t 2 α ρ l = ΓG N U ρ

String simulation C. Ringeval et al.

End of radiation dominated era

End of matter dominated era

Inflation + Strings! Mandatory (peaks,,...) Ω 1 Linearized gravity C l = αc inf l + (1 α)c CS l Predicted (GUT...) Best fit α < 0.1

(Old) CMB data... Bouchet et al. (2000) 17

Pogosian et al. (2004)

depends on theoretical model (SUGRA here)

Currents: Witten bosonic model L W = L a.h (φ,c µ ; q φ,m φ, λ φ ) +L (Σ,A µ ; q σ,m σ, λ σ ) +V (φ, Σ) One (abelian) current Σ =e iψ(ξ a) σ(x ) 20

Generalisation (1): L W = L a.h (φ,c µ ; q φ,m φ, λ φ ) + N i=1 L ( (i) Σ i,a (i) µ ; q(i) σ,m(i) σ, λ(i) σ + V (φ, Σ i ) ) Many abelian currents Σ i =e iψ(i) (ξ a ) σ i (x ) 21

Generalisation (2): L W = L a.h (φ,c µ ; q φ,m φ, λ φ ) +L ( Σ,A a µ; q σ,m σ, λ σ ) + V (φ, Σ) Nonabelian currents Σ =e iψ(ξ a) T σ u (x ) 22 0. σ

Typical string configuration (neutral limit) 3.0 2.5 ~ g 2 = ~ g 3 2 = 0.5 γφ γ σ 2.0 Y( ) 1.5 Z( ) 1.0 0.5 Q( ) X( ) 0 0 5 10 15 20 Distance to the string core 23

Equation of state (B. Carter) 5.2 U/ T µν = g µν L 2 δl δg µν 5.1 Timelike u µ and spacelike v µ eigenvectors T µν = d 2 x T µν = Uu µ u ν Tv µ v ν 5.0 T/ Diagonalisation & Integration 4.9-0.02-0.01 0 ~ 0.01 0.02 0.03 State parameter w η µν µ ψ ν ψ 24

State parameters χ ij η µν µ ψ i ν ψ j symmetric matrix + Diagonalisation & Integration 25

State parameters χ ij η µν µ ψ i ν ψ j symmetric matrix + Diagonalisation & Integration 26

Single current: Macroscopic modelling { L magn (w) = m 2 1 ( 2 w 1+ w m 2 ) 1 w 0 L elec (w) = m 2 1 ( 2 m2 ln 1+ w ) w 0 m 2 5.2 5.1 U/ Many currents V (φ, Σ i ) ( φ 2 η 2) i f (i) Σ i 2 + i,j λ (i,j) Σ i 2 Σ j 2 5.0 T/ w 0 w 0 4.9-0.02-0.01 0 ~ 0.01 0.02 0.03 each condensate acts as a positive mass term for all the others λ (i,j) i j λ (i,i) 27

Small coupling additive model ( ) L (χ) = m 2 + i L i (w i ) T µν = m 2 η µν + i T µν (i) with T µν (i) = U iu µ i u ν i T iv µ i v ν i The dynamics essentially depends on w i but not on x

Non abelian current(s)? Σ n Arbitrary gauge group G Parameters such that there exists a condensate ( Minimum energy state σ ) 0 x G exitations in the worldsheet 1.4 1.2 Σ =e iψa (ξ)t a σ 0 1 currents: Generator for G Jµ a = δl δ µ ψ a Integrated charge: Q a = d 2 x J 0 a 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 29

( + quantization = current algebra J a µ = σ 0 {T a,t b } σ 0 µ ψ b + i ( µ σ 0T a σ 0 σ 0T ) a µ σ 0 0 Q a = d 2 x π a where π a = δl(2) δ ψ a EQCR [ψ a (l 1,t), π b (l 2 (,t)] = iδb a δ (l 1 l 2 ) (worldsheet quantization) = [Q a,q b ] = 0 ( String (wall, brane,...) current [U(1)] n 30

add gauge fields... J a µ = σ 0 {T a,t b } σ 0 µ ψ b + i ( µ σ 0T a σ 0 σ 0T ) a µ σ 0 + B B 2 1.8 1.6 Only ONE finite energy configuration... 1.4 1.2 B B 0 1 0.8 0.6 0.4 0.2 0-0.2 0 10 20 30 40 50 31

Conclusions Cosmic strings are a generic prediction of GUT/string/high energy theories Various cosmological consequences Often superconducting One current = well-defined one parameter worldsheet model Many current = Sum over one-current models Non abelian current? Not possible as embedding in higher dimensions... Non abelian current observed = not a 4D field theory! 32