Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Similar documents
Leptonic CP violation theory

Neutrino Mass Models

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Neutrino masses respecting string constraints

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Polygonal Derivation of the Neutrino Mass Matrix

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Gauged Flavor Symmetries

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

No-go for exactly degenerate neutrinos at high scale? Abstract

Conformal Standard Model

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry

Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

2 Induced LFV in the SUSY see-saw framework

Neutrino Mass in Strings

Neutrino Mixing and Cosmological Constant above GUT Scale

Quarks and Leptons. Subhaditya Bhattacharya, Ernest Ma, Alexander Natale, and Daniel Wegman

arxiv:hep-ph/ v3 27 Sep 2006

A Novel and Simple Discrete Symmetry for Non-zero θ 13

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

12.2 Problem Set 2 Solutions

arxiv:hep-ph/ v2 16 May 2002

Lepton-flavor violation in tau-lepton decay and the related topics

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Neutrino Masses in the MSSM

Duality in left-right symmetric seesaw

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Testing the low scale seesaw and leptogenesis

arxiv:hep-ph/ v2 20 Jul 2005

CP Violation Predictions from Flavour Symmetries

Lepton Flavor Violation in Left-Right theory

Nonzero θ 13 and Models for Neutrino Masses and Mixing

Neutrinos: status, models, string theory expectations

arxiv: v1 [hep-ph] 20 May 2016

RG evolution of neutrino parameters

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13

arxiv: v1 [hep-ph] 16 Mar 2017

Problems for SM/Higgs (I)

arxiv:hep-ph/ v2 16 Feb 2003

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos and CP Violation. Silvia Pascoli

Steve King, DCPIHEP, Colima

Neutrino Models with Flavor Symmetry

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Lifting degenerate neutrino masses, threshold corrections and maximal mixing

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Lepton Flavor Violation

Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model

Models of Neutrino Masses & Mixings

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th

Leptogenesis with type II see-saw in SO(10)

Overview of mass hierarchy, CP violation and leptogenesis.

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

arxiv:hep-ph/ v1 26 Jul 2006

University College London. Frank Deppisch. University College London

Sterile Neutrinos as Dark Matter. Manfred Lindner

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Models of Neutrino Masses

Models of Neutrino Masses & Mixings

Neutrino Masses in the Lepton Number Violating MSSM

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

arxiv: v1 [hep-ph] 21 Jul 2017

Leptogenesis with Majorana neutrinos

University College London. Frank Deppisch. University College London

Theoretical Expectations for Neutrino Parameters: Mixing Schemes, Models and Deviations. Werner Rodejohann (MPIK, Heidelberg) IPMU, 09/11/10

arxiv: v3 [hep-ph] 3 Sep 2012

Interplay of flavour and CP symmetries

A novel and economical explanation for SM fermion masses and mixings

+ µ 2 ) H (m 2 H 2

arxiv: v1 [hep-ph] 6 Mar 2014

Recent progress in leptogenesis

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Spontaneous CP violation and Higgs spectra

arxiv: v2 [hep-ph] 21 May 2015

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Solar and atmospheric neutrino mass splitting with SMASH model

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

arxiv: v2 [hep-ph] 7 Apr 2018

Lepton Flavor and CPV

TPP entrance examination (2012)

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Modular Symmetry in Lepton Flavors

arxiv:hep-ph/ v1 19 Jun 2004

CP Properties of Leptons in Mirror Mechanism

SU(3)-Flavons and Pati-Salam-GUTs

What is the impact of the observation of θ 13 on neutrino flavor structure?

arxiv:hep-ph/ v1 20 Oct 2005

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry

Transcription:

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1

A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum, R. N. Mohapatra, W.R., Phys. Rev. D 76, 053003 (2007) [arxiv:0706.3801 [hep-ph]] R. N. Mohapatra, W.R., Phys. Lett. B 644, 59 (2007) [arxiv:hep-ph/0608111] 2

What is Scaling? Ansatz for the neutrino mass matrix m ν obtainable in many scenarios/models leads to inverted hierarchy alternative to L e L µ L τ alternative to tri-bimaximal, trimaximal, µ τ symmetry etc. U e3 = 0 stable under RG predictive for low energy phenomenology and for see-saw parameters 3

m ν = Ansatz for m ν A B B/c B D D/c B/c D/c D/c 2 rank(m ν ) = 2 one eigenvalue zero 0 m ν 1 = 0 c so the predictions are inverted hierarchy (m 3 = 0) with U e3 = 0 and tan 2 θ 23 = 1/c 2 in general: θ 23 non-maximal! 4

Predictivity 5 physical parameters for θ 12, θ 23, m 2, m 2 A, m ee only one (Majorana) phase: m ee = m 2 A 1 sin 2 2θ 12 sin 2 α <m> [ev] 0.055 0.05 0.045 0.04.035.03.025 0.02 0.015 0.01 0.005 0.24 0.26 0.28 0.3 0.32 0.34 sin 2 θ 12 0.36 0.38 0.4 5

Renormalization take RG into effect by multiplying (m ν ) αβ with m ν = I K = (1 + δ α ) (1 + δ β ) with δ α = C m2 α 16π v 2 ln M X M Z with m ν obeying scaling: A B B/c (1 + δ τ ) B D D/c (1 + δ τ ) B/c (1 + δ τ ) D/c (1 + δ τ ) D/c 2 (1 + δ τ ) 2 Ã B B/ c B D D/ c with c = c (1 + δ τ) B/ c D/ c D/ c 2 m 3 = U e3 = 0 not modified! (Grimus, Lavoura, J. Phys. G 31, 683 (2005)) 6

Comparison with L e L µ L τ usual Ansatz for inverted hierarchy (Petcov, Phys. Lett. B 110, 245 (1982)) 0 A B m ν = A 0 0 B 0 0 also gives m 3 = U e3 = 0 and θ 23 π/4 but predicts m 2 = 0 and θ 12 = π/4 highly tuned perturbations required: m 2 / m 2 A π/4 θ 12 perturbations must be of order 30-40 % effective mass small: m ee cos 2 θ 13 m 2 A cos2θ 12 7

Charged Lepton Corrections U = U l U ν with U ν from scaling: if U l is only 23-rotation: c c (c cos θ l 23 sinθ l 23)/(cosθ l 23 + c sinθ l 23) from µ τ symmetry in general: U e3 1 2 sin θ12 l sinθ13 l e iφ 1 sin 2 θ 23 1 2 + ( sinθl 23 cosφ 2 1 4 sin 2 θ12 l sin 2 ) θ13 l + 1 2 cosφ 1 sinθ12 l sin θ13 l rather tuned to have U e3 = 0 and θ 23 π/4 8

A Model Field D 4 Z 2 quantum number L µ L e 1 + 1 e R, N e, φ 1 1 1 L τ N µ, φ 2 1 + 2 N τ 1 2 φ 3 1 4, µ R τ R φ 4 φ 5 2 + 2 Mohapatra, W.R., Phys. Lett. B 644, 59 (2007) 9

A Model charged leptons and heavy neutrinos M R are diagonal a e iϕ 0 0 m D = v b d e 0 0 0 m ν = v2 M 2 and low energy mass matrix M 2 M 1 a 2 e 2iϕ + b 2 b d b e b d d 2 d e b e d e e 2 gives scaling with tan 2 θ 23 = e 2 /d 2 10

A Model 1 10-8 1 10-9 Y B 1 10-10 1 10-11 0.01 0.02 0.03 0.04 0.05 0.06 <m> [ev] Blum, Mohapatra, W.R., Phys. Rev. D 76, 053003 (2007) 11

Higgs Potential 3X 3X V = µ 2 i φ i φ i µ 2 4(φ 4φ 4 + φ 5φ 5 ) + λ i (φ i φ i) 2 + λ 4 (φ 4φ 4 + φ 5φ 5 ) 2 i=1 i=1 + λ 12 (φ 1φ 1 )(φ 2φ 2 ) + λ 13 (φ 1φ 1 )(φ 3φ 3 ) + λ 23 (φ 2φ 2 )(φ 3φ 3 ) 3X + κ i (φ i φ i)(φ 4 φ 4 + φ 5 φ 5) + α 1 [(φ 1 φ 2) 2 + h.c.] + α 2 φ 1 φ 2 2 i=1 + α 3 [(φ 2 φ 3) 2 + h.c.] + α 4 φ 2 φ 3 2 + α 5 (φ 4 φ 5 + φ 5 φ 4) 2 + α 6 (φ 4 φ 5 φ 5 φ 4) 2 + α 7 (φ 4 φ 4 φ 5 φ 5) 2 + α 8 (φ 4 φ 4 φ 5 φ 5)(φ 1 φ 3 + h.c.) + α 9 [(φ 2φ 4 ) 2 + (φ 2φ 5 ) 2 + h.c.] + α 10 ( φ 2φ 4 2 + φ 2φ 5 2 ) + α 11 [(φ 1φ 4 ) 2 + (φ 1φ 5 ) 2 + h.c.] + α 12 ( φ 1φ 4 2 + φ 1φ 5 2 ) + α 13 [(φ 3φ 4 ) 2 + (φ 3φ 5 ) 2 + h.c.] + α 14 ( φ 3φ 4 2 + φ 3φ 5 2 ) + α 15 [(φ 1φ 4 )(φ 3φ 4 ) (φ 1φ 5 )(φ 3φ 5 ) + h.c.] + α 16 [(φ 1 φ 4)(φ 4 φ 3) (φ 1 φ 5)(φ 5 φ 3) + h.c.] 12

Higgs Potential 5 Higgs doublets 5 real scalars 4 pseudoscalars 4 charged scalars potential can be minimized by choozing Φ 1,2,4,5 = 0 v/ and Φ 3 = 5 0 v/ 5 with masses of scalars above experimental limits 13

0 B @ 0 B @ 0 B @ 0 B @ 0 B @ 0 B @ m D Leptogenesis tan 2 θ 23 1 0 0 0 a 2 0 0 C A I e 23 = a2 2 a2 3 sin2α c 2 3 3 b 2 a 3 e iα 3 3 b 3 c 3 1 0 0 0 a 2 b 2 c 2 C A I e 23 = a2 2 a2 3 sin2α c 2 2 3 b 2 a 3 e iα 2 3 0 0 1 a 1 0 0 0 0 0 C A I e 13 = a2 1 a2 3 sin2α c 2 3 3 b 2 a 3 e iα 3 3 b 3 c 3 1 a 1 b 1 c 1 0 0 0 C A I e 13 = a2 1 a2 3 sin2α c 2 1 3 b 2 a 3 e iα 1 3 0 0 1 a 1 0 0 a 2 e iα 2 b 2 c 2 C A I e 12 = a2 1 a2 2 sin2α c 2 2 2 b 2 2 0 0 0 1 a 1 b 1 c 1 a 2 e iα 2 0 0 C A I e 12 = a2 1 a2 2 sin2α c 2 1 2 b 2 1 0 0 0 Goswami, Khan, W.R., Phys. Lett. B 680, 255 (2009) 14

Scaling and See-Saw m ν = m T D M 1 R usually: m D = i M R R m D m diag ν U infinite number of m D are allowed and hence no predictions for LFV or leptogenesis possible In contrast, scaling constraints m D to have the form: m D = a 1 b b/c a 2 d d/c a 3 e e/c no matter what M R is!! 15

Proof m ν ψ = 0 where ψ = 0 1 c det(m ν ) = 0 and therefore (M R can t be singular) det(m D ) = 0 = m D χ = 0 for one of its eigenvectors χ. With m ν = m T D M 1 R m D it follows m ν χ = 0 Hence, χ is proportional to ψ, which means m D ψ = 0 solution for m D is as given above 16

Scaling and Z 2 Suppose Z 2 generated by ν L S(θ) ν L 1 0 0 S(θ) = 0 cos 2θ sin 2θ 0 sin 2θ cos2θ acts on low energy mass matrix from L = 1 2 νc L m ν ν L this implies θ 23 = θ and U e3 = 0 generalized µ τ symmetry (Grimus et al., Nucl. Phys. B 713, 152 (2005)) scaling can be special case of this S(θ) when cos2θ = c2 1 1+c 2 17

Scaling and Z 2 Now assume see-saw L = 1 2 N R M R N c R + N R m D ν L and Z 2 with ν L S(θ) ν L implies that m D S(θ) = m D and thus a 1 b b/c m D = a 2 d d/c a 3 e e/c scaling in m ν!! 18

Scaling and Lepton Flavor Violation SUSY see-saw BR(l i l j γ) ( m D L m 2 D) ij with L ij = δ ij log M i /M X Note: basis in which M R diagonal: m D = V T R m D If m D obeys scaling, then ( m D L m 2 D) 12 ( m D L m 2 = c2 = cot 2 θ 23 D) 13 and τ eγ too rare to be observable 19

m D = Lepton Flavor Violation Note: if µ τ symmetric see-saw a 1 d 1 d 1 W X X a 2 d 2 d 3 and M R = X Y Z a 2 d 3 d 2 X Y Y then LFV prediction is ( m D m 2 D) 12 ( m D m 2 = 1 D) 13 and logarithmic corrections due to L 20

Scaling and Leptogenesis m D = if µ τ symmetric see-saw a 1 d 1 d 1 a 2 d 2 d 3 and M R = a 2 d 3 d 2 W X X X Y Z X Y Y then 2 RH neutrinos: no leptogenesis, neither flavored nor unflavored 3 RH neutrinos: unflavored Y B m 2 Mohapatra, Nasri, Phys. Rev. D 71, 033001 (2005); Mohapatra, Nasri, Yu, Phys. Lett. B 615, 231 (2005) 21

m D = Scaling and Leptogenesis 2 RH neutrinos and scaling A 1 B B/c and M R = VR D R V R A 2 D D/c gives decay asymmetry ε 1 = 3 16π v 2 M 1 m 1 r m 2 1 + r e iρ 2 sinρ just as for µ τ symmetry and 3 RH neutrinos! wash-out parameter: m 1 = m ( ) 1 + r m 2 1 + r e iρ = O m 2 A strong wash-out (flavored leptogenesis: ε α i determined by m 2 A ) 22

Scaling and Leptogenesis add additional Z 2 N R S(θ) N R which implies S(θ) m D = m D and S(θ) M R S(θ) = M R m D = 0 B @ A 1 B B s 23 /c 23 A 2 c 23 D c 23 D s 23 A 2 s 23 D s 23 D s 2 23/c 23 This Z 2L Z 2R gives 1 C A and M R = 0 B @ A B B/c B F (c 1/c) + G F B/c F G 1 C A One heavy RH neutrino decouples and formulae are as above 23

Scaling and Non-Standard Neutrino Physics Dirac neutrinos: m ν = a 1 b b/c a 2 d d/c a 3 e e/c sterile neutrinos: a 1 b 1 b 1 /c d 1 e 1 b 1 b 2 b 2 /c d 2 e 2 m ν = b 1 /c b 2 /c b 2 /c 2 d 2 /c e 2 /c d 1 d 2 d 2 /c d 2 /c 2 e 2 /c 2 e 1 e 2 e 2 /c e 2 /c 2 e 5 0 1 1+c 2 c 1+c 2 0 0 = U e3 U µ3 U τ3 U s1 3 U s2 3 24

m ν = Summary A B B/c B D D/c B/c D/c D/c 2 highly predictive and reconstructible scenario inverted hierarchy and U e3 = 0, stable under RG obtainable in flavor models, see-saw texture analyses,... determines m D irrespective of M R interesting differences to µ τ symmetry 25

26

Scaling and Leptogenesis m D m D = ZZ 0 0 0 m 1 e iα 1 = Z2 11 M 1 m 2 e iα 2 = Z2 22 M 2 and ( 1 + Z2 21 ( Z11 2 1 + Z2 21 Z11 2 M 1 M 2 M 1 M 2 ) ) Z 12 Z 22 = Z 21 Z 11 M 1 M 2 = r Z2 11 M 1 ( 1 + r e iρ ) Z2 ( 22 ) 1 + r e iρ, M 2 M1 e iρ/2 M 2 27

Scaling and Leptogenesis The individual flavored decay asymmetries read ε µ 1 = c2 23 (ε 1 ε e 1) ε τ 1 = s 2 23 (ε 1 ε e 1) and ε e 3 M 1 ( ( ) 1 = r m 2 16π v 2 m 1 1 + r e iρ 2 2 s 2 12 m 2 1 c 2 12 sinρ+ c 12 s 12 m1 m 2 r ((m 1 m 2 r) sin(α 1 α 2 4β ρ)/2+ (m 1 r m 2 ) sin(α 1 α 2 4β + ρ)/2)) 28

Normal hierarchy Normal hierarchy U e3 2 0.01 0.001 0.0001 1e-05 1e-06 1e-07 A AB # BB BM BO CM CY DMM DR GK + JLM < VR > YW > # 1e-08 0.94 0.95 0.96 0.97 0.98 0.99 1 < + U e3 2 0.01 0.001 0.0001 1e-05 1e-06 1e-07 > + < # A AB # BB BM BO CM CY DR GK + JLM < VR > YW 1e-08 0.25 0.3 0.35 0.4 sin 2 2θ 23 Inverted hierarchy sin 2 θ 12 Inverted hierarchy 0.01 0.01 0.001 0.001 U e3 2 1e-4 U e3 2 1e-4 1e-05 1e-05 1e-06 1e-06 1e-07 0.88 0.9 0.92 0.94 0.96 0.98 1 1e-07 0.25 0.3 0.35 0.4 sin 2 2θ 23 sin 2 θ 12 Albright, W.R., Phys. Lett. B 665, 378 (2008) 29

Comparison with µ τ Symmetry m µ τ ν = A B B B D E B E D obtained from Z 2 invariance ν L S µτ ν L leading to Sµτ 1 m ν S µτ = m ν with 1 0 0 S µτ = 0 0 1 0 1 0 (cf. with scaling and c = 1) Broken µ τ symmetry gives in general O( θ 23 π/4 ) = O( U e3 ) 30