CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Student s Guide

Similar documents
CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Teacher

CESAR Science Case. The mass of Jupiter. Calculating the mass of a planet from the motion of its moons. Teacher Guide

Prelab 4: Revolution of the Moons of Jupiter

The Mass of Jupiter Student Guide

The Revolution of the Moons of Jupiter

Key Stage 3: Celestia Navigation Teacher s Notes

Name: Lab Partner: Department of Physics Gettysburg College Gettysburg, PA 17325

The Revolution of the Moons of Jupiter Student Manual

PHYS133 Lab 4 The Revolution of the Moons of Jupiter

AST101: Our Corner of the Universe Lab 8: Measuring the Mass of Jupiter

Lab 6: The Planets and Kepler

Lesson 2. NON OPTICAL ASTRONOMY: GRAVITATION SCIENTIFIC CASE: Gravitation. Spokesperson:

Introduction To Modern Astronomy I

Astron 104 Laboratory #6 The Speed of Light and the Moons of Jupiter

Planetary Orbits: Kepler s Laws 1/18/07

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a

Unit: Planetary Science

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.

Student s guide CESAR Science Case Observing the planets and the Jupiter s moons

Universal Gravitation

ASTR 310 Tutorial 3: A Human Orrery

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION

Assignment #0 Using Stellarium

Physics 1100: Uniform Circular Motion & Gravity

7.4 Universal Gravitation

Introduction To Modern Astronomy II

Lecture 13. Gravity in the Solar System

Gravity and the Orbits of Planets

Name. Satellite Motion Lab

Chapter 14 Satellite Motion

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

STANDARD WHII.6a The student will demonstrate knowledge of scientific, political, economic, and religious changes during the sixteenth, seventeenth,

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets. Chapter Four

Assignment 1. Due Feb. 11, 2019

Astronomy Section 2 Solar System Test

APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS

Gravitation and the Motion of the Planets

VISUAL PHYSICS ONLINE

PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

GRAVITATION. F = GmM R 2

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium

Student s guide CESAR Science Case The Venus transit and the Earth-Sun distance

History of Astronomy. Historical People and Theories

AST101: Our Corner of the Universe Lab 4: Planetary Orbits

General Physics 1 Lab - PHY 2048L Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date. Part 1: Projectile Motion

60 C From Bicycle to Space. Dionysis Konstantinou Corina Toma. Space Travel

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Ch. 22 Origin of Modern Astronomy Pretest

Circular/Gravity ~ Learning Guide Name:

PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS

Activity 2 MODELING LAB

Announcements. Topics To Be Covered in this Lecture

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

After you read this section, you should be able to answer these questions:

VISUAL PHYSICS ONLINE

Overview of Astronautics and Space Missions

Final key scientist in this story: Galileo Galilei

PHYS 155 Introductory Astronomy

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system.

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc)

Episode 403: Orbital motion

Chapter 1 The Copernican Revolution

In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

Kepler, Newton, and laws of motion

Venus Project Book, the Galileo Project, GEAR

[05] Historical Perspectives (9/12/17)

Go to Click on the first animation: The north pole, observed from space

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

If Earth had no tilt, what else would happen?

Introduction. Name: Basic Features of Sunspots. The Solar Rotational Period. Sunspot Numbers

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Unit 1 Astronomy: Kepler s Laws Of Planetary Motion Assessed Activity (66 marks total)

History of Astronomy - Part I. Ancient Astronomy. Ancient Greece. Astronomy is a science that has truly taken shape only in the last couple centuries

PTYS/ASTR 206 Section 2 Spring 2007 Homework #5 (Page 1/4) NAME: KEY

Gravity Well Demo - 1 of 9. Gravity Well Demo

Physics Lab #6:! Mercury!

Uniform Circular Motion

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Unit 2: Celestial Mechanics

Occam s Razor: William of Occam, 1340(!)

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

Is there life outside of Earth? Activity 2: Moving Stars and Their Planets

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Name and Student ID Section Day/Time:

BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

9.2 Worksheet #3 - Circular and Satellite Motion

Transcription:

Jupiter Mass Calculating a planet s mass from the motion of its moons Student s Guide

2

Table of Contents The... Error! Marcador no definido. Kepler s Three Laws... 4 Activity 1: Properties of the Galilean Moons... 6 Activity 2: Calculate the period of your favourite moon... 9 Activity 3: Calculate the orbital radius of your favourite moon... 12 Activity 4: Calculate the... 15 Additional Activity: Predict a Transit... 16 To know more... 19 Links... 19 3

Background Kepler s Three Laws The three Kepler s Laws, published between 1609 and 1619, meant a huge revolution in the 17th century. With them scientists were able to make very accurate predictions of the motion of the planets, changing drastically the geocentric model of Ptolomeo (who claimed that the Earth was the centre of the Universe) and the heliocentric model of Copernicus (where the Sun was the centre but the orbits were perfectly circular). These laws can be summarised as follows: 1. First Law: The orbit of every planet is an ellipse, with the Sun at one of the two foci. 2. Second Law: A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. Figure 1: Second Law of Kepler (Credit: Wikipedia) 3. Third Law: The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. Considering that the planet moves in a circular orbit with no friction, the gravitational force equalizes the centrifugal force. Therefore, the third Kepler s law can be express as: F G = F C GMm R 2 = m a c and as a c = v2 R GMm R 2 = m v2 R as v = ω R = 2π T R Note that M is the mass of the main object and m is the mass of the orbiting one, v is the linear velocity of the moving body, R is the radius of the orbit, ω is the angular velocity of it, T is the period of the orbiting object (in seconds) and G is the gravitational constant, which value is G = 6.674 10 11 m 3 kg 1 s 2 4

Therefore, the quotation previously mentioned is achieved: T 2 R 3 GM 4π 2 = R3 T 2 In this Science Case we are going to make use of two of the most practical astronomical tools: Cosmographia and Stellarium. By applying the third Law of Kepler we could calculate the mass of Jupiter. Please check CESAR Booklets (see links) to know how to install and configure these software packages. Did you know? Jupiter is the largest planet in the Solar System: more than 11 times bigger than the Earth and around of 320 times heavier than it. Jupiter is also the planet with more moons orbiting around it: 79 moons have been discovered up to 2018. However these moons are not equal in size. The biggest ones (Io, Europa, Ganymede and Callisto) were the first discovered by Galileo Galilei in 17 th century. It was in Galileo s honour why they are called the Galilean Moons. Figure 2: The Galilean moons (Credits:NASA) 5

Activity 1: Properties of the Galilean Moons For this first activity Cosmographia will be used. 1. Double click on Cosmographia.app and it will pop up the application as Figure 3. Figure 3: Cosmographia starting view Note: The menu of Cosmographia is at the left part of the window. 2. Select the first option (the white circles). The image of the solar system bodies will be displayed. See Figure 4 Figure 4: Solar System bodies as seen in Cosmographia 6

3. Find out Jupiter and click on it. Cosmographia will drive you to Jupiter (Figure 5) Figure 5: Solar System bodies 4. Scroll out and turn the mouse until you find the Galilean moons (Io, Europa, Ganymede and Callisto), as in Figure 6 Figure 6: Solar System bodies as seen in Cosmographia 7

5. Display the trajectory for the four moons by doing right click on each one (see Figure 7) Figure 7: Trajectory toggle menu as seen in Cosmographia 6. Display the properties of Jupiter and every Galilean moons and will Table 1 Figure 8: Right click on Jupiter (left image); Jupiter properties (right image) as seen in Cosmographia 8

Now is your turn to write down the most important properties of them on the following table: Object Mass (kg) Radius (km) Density (g/cm 3 ) Jupiter Io Europa Ganymede Callisto Table 1: Chart of properties of Jupiter and the Galilean Moons Now that you are familiar with the Galilean moons, choose your favourite one for the following activities. Your Moon Activity 2: Calculate the period of your favourite moon The third Kepler s Law involves several orbital parameters, and the periodicity of the motion (period or T term in the equations) is one of them. You will calculate the period using Stellarium. Open Stellarium Open the console, by pressing F12, and paste the following script on it: core.setobserverlocation("madrid, Spain"); LandscapeMgr.setFlagLandscape(false); LandscapeMgr.setFlagAtmosphere(false); LandscapeMgr.setFlagFog(false); core.selectobjectbyname("jupiter", true); core.setmountmode("equatorial"); core.settimerate(3000); StelMovementMgr.setFlagTracking(true); StelMovementMgr.zoomTo(0.167, 5); 9

Once you are done click on the play button ( ) and a figure similar to Figure 9 will be displayed Figure 9: Stellarium view, after running the script The name of the Galilean moons will be displayed. Check how your favourite moon moves around Jupiter. It is following a periodic motion! However, as you may guess the real motion is slower (indeed 3000 times slower). Slow down the motion at your convenience. Calculate how much time your moon spends in doing a complete loop around Jupiter. For this pay attention to the parameters date and time at the lower part of the display. Select one point in time and write down the value. See the evolution of the movement and note down the time when the moon is again at the same position. The difference between those 2 points is the period. Initial date (YYYY-MM-DD hh:mm:ss) Final date (YYYY-MM-DD hh:mm:ss) Calculate the time difference here Table 2: Moon period calculation Write down the result of your moon here: Period days hours 10

Figure 10: Jupiter Moons visualization (Credit: CESAR) As shown in Figure 10, be aware that in Stellarium we are seeing Jupiter as it is seen from Earth. However, the motion of the moons is circular, but we are just watching a projection in 2 dimensions. Did you know? Jupiter has always been a very interesting astronomical object to study. Since the first observation from Galileo a lot of improvements have been achieved. Figure 11: Artist's concept of the proposed JUICE mission to the Jupiter system (Credit: Wikipedia) Several space missions have passed very close to this planet: like Pioneer 10 and 11, both Voyager 1 and 2, Galileo, Cassini-Huygens and Ulysses has made some fly-bys around Jupiter. And other missions like JUNO (from NASA) have been developed for this planet in particular. ESA is currently working in JUICE, which will be launched in 2022. 11

Activity 3: Calculate the orbital radius of your favourite moon The orbital radius of a moon, assuming a circular movement, can be defined as the maximum distance between Jupiter and your moon. As you can see in Figure 13, this value can be obtained by using trigonometry basis. To calculate this you will make use of Stellarium and the plugin Angle Measure. Note: Make sure the plugin Angle Measure is active in your configuration. Otherwise do the following: Move your mouse to the left part of the screen Open the configuration menu (or F2 in your keyboard) Select Angle Measure > Load at startup Restart Stellarium. Ready for calculating the radius? Follow the next steps to make the measurement: Stop the motion of the moons around Jupiter by pressing in the lower menu (or K in your keyboard) Move your mouse again to the lower menu and press (you can also press Ctrl + A) in order to enable the Angle Measuring plugin. Click on the centre of Jupiter and later the centre of your favourite moon. WARNING: The Kepler s Laws are just valid if the measurement is done from the centre of the astronomical objects, so be sure that you click on the centre of the moon and the centre Jupiter. Figure 12: Using Angle Measure plugin Write down your measurement here, in the column 2 in the units given by the program. Convert these units to degrees (with decimals) and write down the distance in degrees. Note: We are considering angular distance, that is why the units are given in degrees. 12

Maximum Distance of your Moon to Jupiter Write your calculations here Remember: 1 = 60 and 1 = 60 1 = 3600 Did you know? The relationship between the angular distance (θ) and the orbital distance of every moon (R) to Jupiter, can be calculated using basic trigonometry; and lastly(d JE ) is the distance from Jupiter to the Earth, which is obtained with Stellarium. As you can see in Figure 13 we can use the definition of the sine, which states that: in a rectangular triangle, the ratio between the length of the opposite side of an angle and the length of the hypotenuse is the sine of that angle. Which can also be expressed mathematically with the equation (1): R = d JE sin θ (1) Figure 13: Sketch for calculating moon-jupiter distance 13

Note down the distance from Earth to Jupiter (d JE ), which is shown in the left side of Stellarium. This value appears in AU, Astronomical Units, so convert it to km, considering the proper conversion: Note: 1 AU is the mean distance from the Earth to the Sun, and 1 AU = 149 584 372 km, d JE = AU km Using the equation R = d JE sin θ, we can obtain the distance from Jupiter to your moon R (see Figure 13 for further explanation): R = d JE sin θ R = km m And finally, once we have the radius of the orbit we can obtain the velocity of the moon, where v is the lineal velocity, ω the angular velocity, T is the period of the moon (in seconds) and R the maximum distance previously calculated (but now in metres). v = ω R = 2π T R v = m/s 14

Activity 4: Calculate the Using the Kepler s Laws, as we see on Background Section we can obtain the mass of the planet: GM J 4π 2 = R3 T 2 M J = 4π2 G Remember that R is the radius of the moon s orbit (in metres), T is the period of your moon (in seconds) and G is the gravitational constant, which value is G = 6.674 10 11 m 3 kg 1 s 2 R 3 T 2 Remember to use scientific notation! M J = kg 15

Additional Activity: Predict a Transit Did you know? Astronomers call transit to the pass of an astronomical object in front of another. They are very similar to eclipses, but they just differ on the apparent size of these two objects: if one is apparently largest than the other it is called a transit; but if their apparent size is similar it is an eclipse. For example, here on Earth we can see some eclipses during every year. A solar eclipse occurs when the Moon is between the Earth and the Sun, this way in several places of Earth it will be dark, even it was daytime. Figure 14: Phenomena concept (left), solar eclipse (centre) and Mercury transit (right) Credits: CESAR/NASA The same happens in other planets of the Solar System and other stars. In Jupiter we can see these transits from Earth using ground-based telescopes and satellites. Figure 15: Io and Europa transit, using Stellarium 16

Figure 16 shows the trajectory of the moons (X axis) over time (Y axis), and we will obtain a sinusoidal movement, as seen on Figure 16. But remember, this movement is a straight line as seen from Earth, we saw in Figure 10. In the graph below, the black curve of the graph means the separation from the moon to Jupiter, given in Jupiter radius. Every time the moon is on the dark part (called umbra) of the graph it will be transiting Jupiter whether behind it or a background pass. The grey part is assigned to the penumbra. Figure 16: Jupiter Moon Tracker Results Predict the transit generated by your favourite moon on Jupiter surface: WARNING: If your moon is Callisto you may change to another for this activity. A transit also depends on the angle of inclination of the orbit and as Callisto is so far from Jupiter this transit is not visible from the Earth. In the case of Io and Europa the date and time of one transit is already in the script. But try to find another, press for moving to your current date and time. If you have Ganymede, you have to look for it. One way you can do it is moving forward on time, for example at x300 time rate, and stopping the animation when you find it. It is recommended to use the same moon as chosen before as favourite as we are going to use some of the already calculated values (T, the period). 17

1. Open Stellarium 2. Open a console and add these lines to your previous script StelMovementMgr.zoomTo(0.0167, 5); core.setdate("2018:08:17t00:20:50","utc"); core.settimerate(300); 3. Write down the date (start and end times) of a transit of your chosen as favourite moon. Note: the format (YYYY-MM-DD hh:mm:ss) Beginning of the 1 st transit End of the 1 st transit 4. Now your job is to predict the next transit. When is going to be the next transit? WARNING: Remember from previous activities that the movement of the moons is periodic, and that you have already calculated the period. Beginning of the 2 nd transit End of the 2 nd transit Do you think it will be seen with telescopes on Earth? And with space telescopes? Explain the reasoning behind your answers 18

To know more Links Software CESAR Booklets: Cosmographia, Stellarium Cosmographia Official Users guide https://cosmoguide.org/ Stellarium Official Users Guide https://github.com/stellarium/stellarium/releases/download/v0.18.1/stellarium_user_guide- 0.18.1-2.pdf Planets CESAR Booklet: General Understanding of the solar System Kepler s Laws : Orbits (Spanish only) Kepler s Laws Animation http://astro.unl.edu/classaction/animations/renaissance/kepler.html 19