Physics 663. Par t icle Physics Phenomenology. Apr il 18, Physics 663, lecture 3 1

Similar documents
Physics 663. Par t icle Physics Phenomenology. May 7, Physics 663, lecture 8 1

The Next Linear Collider and t he Or igin of Elect r oweak Physics

I nt er act ion of Radiat ion wit h Mat t er Gamma Rays

Per cent Wor d Pr oblems

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Physics 610. Adv Particle Physics. April 7, 2014

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Status of linear collider designs:

Gen ova/ Pavi a/ Ro ma Ti m i ng Count er st at Sep t. 2004

Accelerator development

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

TFCC / TCDP / TCPP / TCSA and Proposal f or a new TC on Scalable Comput ing (TCSC)

CLIC THE COMPACT LINEAR COLLIDER

Particle Accelerators for Research and for Medicine

3. Particle accelerators

Colliders - Quo Vadis?

Experimental Techniques

T h e C S E T I P r o j e c t

Particle Accelerators for Research and for Medicine

Introduction to Particle Accelerators & CESR-C

LHC Luminosity and Energy Upgrade

Fr anchi s ee appl i cat i on for m

Why do we accelerate particles?

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

Modern Accelerators for High Energy Physics

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06

LC Calorimeter Ideas and R&D Opportunities

ELECTR OM AGN ETIC UN IFICATION, ELECTR ON IC CON CEP TION OF THE S P ACE, THE EN ER GY AN D THE M ATTER

Engines of Discovery

CLIC Detector studies status + plans

PUPI L PREMI UM POLI CY. June 2017

I zm ir I nstiute of Technology CS Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

Particle accelerators

Benchm ar k One St ud y Guid e: Science Benchm ar k Wed. Oct. 2nd

A Two-Stage Bunch Compressor Option for the US Cold LC

Particle Physics Columbia Science Honors Program

e + e - Linear Collider

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators. Koji TAKATA KEK. Accelerator Course, Sokendai

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns

Introduction to Collider Physics

ILC concepts / schematic

EP228 Particle Physics

CLASSIFICATION OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN :2007+A1:2009

arxiv: v1 [physics.acc-ph] 9 Feb 2016

USER MANUAL V1.3 CHRYSLER VEHICLES VEHICLE FLASHER

Contents. LC : Linear Collider. µ-µ Collider. Laser-Plasma Wave Accelerator. Livingston Chart 6 References

Overview on Compton Polarimetry

Tools of Particle Physics I Accelerators

Thanks to all Contributors

Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References. Koji TAKATA KEK. Accelerator Course, Sokendai

THE CLIC PROJECT - STATUS AND PROSPECTS

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University

Senility Degree. Our machine derives APG waveform after 2 nd differential of arterial pulse wave in order to measure

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University)

Proton-driven plasma wakefield acceleration

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575

Engines of Discovery

Introduction to Elementary Particle Physics I

Status of PEP-II and BaBar. 1 Introduction. 2 PEP-II Machine

Accelerators and Colliders

FACET-II Design Update

Lecture 1 and 2: Introduction Why do we accelerate? What are the important parameters for characterizing accelerators Lecture 3 and 4: Examples

WEATHER MAP INFORMATION STATION MODEL. Station Model Lab. Period Date

Me t r o p o l i t a n A REA S

High-gradient X-band RF technology for CLIC and beyond

1 Introduction The SLAC B Factory asymmetric B-factories was approved by President Clinton in October B-factories The inaugural meeting of the d

PUBLICATION. The Global Future Circular Colliders Effort

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay

8 lectures on accelerator physics

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

ERL FACILITY AT CERN FOR APPLICATIONS

International Linear Collider ILC Overview

Particle Accelerators for High Energy Physics Accelerators and HEP

The Large Hadron electron Collider (LHeC) at the LHC

CLIC Project Status. Roger Ruber. Uppsala University. On behalf of the CLIC Collaborations. Thanks to all colleagues for materials

A Phenomenological Cost Model for Big Accelerators in the US

Minutes of the DEPB Committee Meeting held on 01/07/ 2005

Two Beamline Ground Motion Simulation for NLC

CHALLENGES IN FUTURE LINEAR COLLIDERS

Positron Source using Channelling for the Baseline of the CLIC study

Superconducting RF Accelerators: Why all the interest?

Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron

Particle Accelerators

Particles and Universe: Particle accelerators

Status of linear collider designs:

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources

Status of Accelerator R&D at ILC

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN

WG2 on ERL light sources CHESS & LEPP

P a g e 5 1 of R e p o r t P B 4 / 0 9

Physics of Diagnostic X-rays

exclusive fully t iled one-piece p o o l s & s p a s Delivered t o your door High Qualit y Fully t iled & complet e page 1

Why a muon collider?

Lectures on accelerator physics

Hybrid Bonded Wheel

Theory English (Official)

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Transcription:

Physics 663 Par t icle Physics Phenomenology Apr il 18, 2002 Physics 663, lecture 3 1

Acceler at or s High I mpedance Micr owave Devices Super conduct ing Technology Elect r on Synchr ot r ons Elect r on Linear Acceler at or s St or age Rings Collider s Linear Collider s next Linear Collider Muon Collider VLHC Synchr ot r on Radiat ion Facilit ies Ref er ences: Donald H. Per kins, I nt r oduct ion t o High Ener gy Physics, Four t h Edit ion Ber gst r om and Goobar, Cosmology and Par t icle Ast r ophysics Physics 663, lecture 3 2

High-impedance Micr owave Devices EM cavit ies wer e invent ed as a way t o gener at e high volt age at moder at e input power Amplif ier s Oscillat or s Cavit ies Disk-loaded waveguides Physics 663, lecture 3 3

Klyst r ons The klyst r on was invent ed at St anf or d in 1937. The klyst r on ser ved as an oscillat or in r adar r eceiver s dur ing WW I I. Af t er t he war, however, ver y high-power klyst r ons wer e built at St anf or d f or use in t he f ir st linear acceler at or s. This opened t he way f or t he use of klyst r ons not only in acceler at or s and r adar, but also in UHF-TV, sat ellit e communicat ions, and indust r ial heat ing. Klyst r ons ar e high-vacuum devices based on t he int er act ion of a wellf ocused pencil elect r on beam wit h a number of micr owave cavit ies t hat it t r aver ses, which ar e t uned at or near t he oper at ing f r equency of t he t ube. The pr inciple is conver sion of t he kinet ic ener gy in t he beam, impar t ed by a high acceler at ing volt age, t o micr owave ener gy. Conver sion t akes place as a r esult of t he amplif ied RF input signal, causing t he beam t o f or m "bunches." These give up t heir ener gy t o t he high level induced RF f ields at t he out put cavit y. The amplif ied signal is ext r act ed f r om t he out put cavit y t hr ough a vacuum window. Physics 663, lecture 3 4

Super conduct ing Technology Super conduct ing mat er ials added t o t he t echnology base of acceler at or s Niobium-t it anium mult ist r and cables Niobium-t in f or higher f ields, but br it t le Niobium coat ings inside RF cavit ies now pr act ical and r eliable Physics 663, lecture 3 5

Elect r on Synchr ot r ons Limit ed by gr owing synchr ot r on r adiat ion ener gy r adiat ed per par t icle per t ur n since ener gy loss scales as m - 4, r adiat ion is (M/ m) 4 10 13 t imes lar ger f or elect r ons t han pr ot ons LEP (E beam = 100 GeV) will be highest ener gy elect r on synchr ot r on 'E= 4 GeV This ef f ect mot ivat ed t he lar ge elect r on linac at SLAC Physics 663, lecture 3 6

Elect r on Linear Acceler at or s SLAC was built f or 25 GeV elect r ons wit h 240 klyst r ons shor t 2 micr osecond bur st s of int ense power at 60 Hz event ually exceeded 50 GeV by shor t ening t he pulse also 120 Hz Avoids synchr ot r on r adiat ion Loses advant age of mult iple passes in cir cular acceler at or Physics 663, lecture 3 7

St or age Ring SPEAR complet ed in 1972 80 met er diamet er E beam up t o 4 GeV char m discover ed in 1974 1990 - dedicat ed t o synchr ot r on r adiat ion Physics 663, lecture 3 8

The Lar gest Collider s Two lar gest and highest ener gy collider s ar e Fer milab Tevat r on (pr ot on/ ant ipr ot on wit h 1 TeV beam ener gy) CERN Ring LEP I I (elect r on/ posit r on wit h 100 GeV beam ener gy) Lar ge Hadr on Collider -LHC (pr ot on colliding wit h 7 TeV beam ener gy - t o t ur n on ar ound 2008) Physics 663, lecture 3 9

Linear Collider s Acceler at ion of elect r ons in a cir cular acceler at or is plagued by Nat ur e s r esist ance t o acceler at ion Synchr ot r on r adiat ion E = 4π/ 3 (e 2 β 3 γ 4 / R) per t ur n (r ecall γ = E/ m, so E ~ E 4 / m 4 ) eg. LEP2 E = 4 GeV Power ~ 20 MW For t his r eason, at ver y high ener gy it is pr ef er able t o acceler at e elect r ons in a linear acceler at or, r at her t han a cir cular acceler at or elect r ons posit r ons Physics 663, lecture 3 10

Linear Collider s Synchr ot r on r adiat ion E ~ (E 4 / m 4 R) Ther ef or e Cost (cir cular ) ~ a R + b E ~ a R + b (E 4 / m 4 R) Opt imizat ion R ~ E 2 Cost ~ c E 2 Cost (linear ) ~ ac L, wher e L ~ E cost Cir cular Collider Linear Collider Ener gy At high ener gy, linear collider is mor e cost ef f ect ive Physics 663, lecture 3 11

Linear Collider s The Fir st Linear Collider SLAC Linear Collider (SLC) next Linear Collider TESLA NLC/ J LC CLI C Physics 663, lecture 3 12

The Fir st Linear Collider (The SLC) This concept was demonst r at ed at SLAC (St anf or d Linear Acceler at or Cent er ) in a linear collider pr ot ot ype oper at ing at ~91 GeV (t he SLC) SLC was built in t he 80 s wit hin t he exist ing SLAC linear acceler at or Oper at ed 1989-98 pr ecision Z 0 measur ement s est ablished LC concept s Physics 663, lecture 3 13

The next Linear Collider T he next Linear Collider proposals include plans to deliver a few hundred fb -1 of integrated lum. per year TESLA J LC-C NLC/ J LC-X * design (1034 ) 3.4 o 5.8 0.43 2.2 o 3.4 E (GeV) 500 CM o 800 500 500 o 1000 Ef f. Gr adient (MV/ m) 23.4 o 35 34 70 RF f r eq. (GHz) 1.3 5.7 11.4 t bunch (ns) 337 o 176 2.8 1.4 # bunch/ t r ain 2820 o 4886 72 190 Beamst r ahlung (%) 3.2 o 4.4 4.6 o 8.8 Ther e will only be one in t he wor ld, but t he t echnology choice r emains t o be made * US and J apanese X-band R&D cooper at ion, but machine par amet er s may dif f er Physics 663, lecture 3 14

The next Linear Collider A plan f or a high-ener gy, highluminosit y, elect r on-posit r on collider (int er nat ional pr oj ect ) E cm = 500-1000 GeV Lengt h ~25 km ~15 miles Physics Mot ivat ion f or t he NLC Elucidat e Elect r oweak I nt er act ion par t icular symmet r y br eaking This includes Higgs bosons super symmet r ic par t icles ext r a dimensions Const r uct ion could begin ar ound 2005-6 and oper at ion ar ound 2011-12 (X) (S) (L) (UHF) Electron Injector RF Systems 11.424 GHz 2.856 GHz 1.428 GHz 0.714 GHz Positron Injector 10-2000 560 m ~10 m 170 m 510 m 200 m 10 m 560 m Pre-Linac 6 GeV (S) Compressor 136 MeV (L) ~5 km Pre-Damping Ring (UHF) 2 GeV (S) e Damping Ring e (UHF) e 9.9 km e+ 6 GeV (S) Target 2 GeV (L) 136 MeV (L) Compressor Pre-Linac 6 GeV (S) ~100 m 0.6 GeV (X) ~20 m Compressor e+ e+ Damping Ring (UHF) ~20 m ~100 m 9.9 km Low E Detector Electron Main Linac 240-490 GeV (X) Positron Main Linac 240-490 GeV (X) Compressor 0.6 GeV (X) not t o scale Final Focus Dump ~300 m Hi E Detector Dump Final Focus 8047A611 Physics 663, lecture 3 15

NLC/ J LC X Band RF Room t emper at ur e Electron Injector 560 m ~10 m 170 m Pre-Linac 6 GeV (S) Compressor 136 MeV (L) 2 GeV (S) e ~100 m 0.6 GeV (X) ~20 m Compressor Damping Ring e (UHF) Electron Main Linac 240-490 GeV (X) 9.9 km (X) (S) (L) (UHF) RF Systems 11.424 GHz 2.856 GHz 1.428 GHz 0.714 GHz ~5 km Low E Detector Final Focus Dump ~300 m Hi E Detector Dump Final Focus Positron Injector 510 m 200 m 10 m 560 m Pre-Damping Ring (UHF) e 9.9 km e+ 6 GeV (S) Target 2 GeV (L) 136 MeV (L) Compressor Pre-Linac 6 GeV (S) e+ e+ Damping Ring (UHF) ~20 m ~100 m Positron Main Linac 240-490 GeV (X) Compressor 0.6 GeV (X) 10-2000 not t o scale 8047A611 Physics 663, lecture 3 16

TESLA Super conduct ing RF Low t emper at ur e Physics 663, lecture 3 17

Time St r uct ur e Physics 663, lecture 3 18

CLI C (Compact Linear Collider) Physics 663, lecture 3 19

NLC Engineer ing Power per beam 6.6 MW cw (250 GW dur ing pulse t r ain of 266 nsec) Beam size at int er act ion 245 nanomet er s x 3 nanomet er s Beam f lux at int er act ion 10 12 MW/ cm 2 cw (3 x 10 13 GW/ cm 2 dur ing pulse t r ain) Cur r ent densit y 6.8 x 10 12 A/ m 2 I nduced magnet ic f ield (beam-beam) 10 Tesla St abilize beam- beam induced bremsst rahlung - beamst rahlung Physics 663, lecture 3 20

Muon Collider Mot ivat ion: elect r on collider limit ed at high ener gy lengt h of linear collider -> $ beamst r ahlung - limit s L - but σ~ 1/ s so need L ~ s muons can be st or ed in a cir cular machine Pr oblems f or Muons unst able 2 x 10-6 secs -> γcτ ~ 6 x 10 2 γ met er s pr oduced as lar ge beam -> need t o f ocus Higgs Fact or y coupling t o Higgs ~ m f 2 4 x 10 4 x elect r on Physics 663, lecture 3 21

Muon Collider Physics 663, lecture 3 22

Muon Collider I onizat ion Beam Cooling Neut r ino Radiat ion Det ect or Radiat ion The Fut ur e f ir st st ep - neut r ino f act or y demonst r at es st or age and cooling Physics 663, lecture 3 23

Neut r ino Fact or y Physics 663, lecture 3 24

VLHC 100 TeV x 100 TeV since LHC = 14 TeV x 14 TeV Opt ions low f ield, lar ge r ing high f ield, small r ing Physics 663, lecture 3 25

Synchr ot r on Radiat ion Facilit ies A br oad spect r um of science has benef it ed f r om t he development of lar ge st or age r ings f or high ener gy physics sour ce of synchr ot r on r adiat ion init ially par asit ic oper at ion f r om HEP f acilit ies dedicat ed f acilit ies f ut ur e plans, such as LCLS Physics 663, lecture 3 26