Collaborator ==============================

Similar documents
Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Xe nuclear spin maser and search for atomic EDM

Nuclear spin maser for 129 Xe atomic EDM measurement - present status -

Nuclear spin maser and experimental search for 129 Xe atomic EDM

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

EDM measurement in 129 Xe atom using dual active feedback nuclear spin maser

Shuichiro Kojima, Chikako Funayama, Shunya Tanaka, Yu Sakamoto, Yuichi Ohtomo, Chika Hirao, Masatoshi Chikamori, Eri Hikota

Status of the Search for an EDM of 225 Ra

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University

EDMs of stable atoms and molecules

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

Search for a Permanent Electric Dipole Moment of 199 Hg

Experimental Atomic Physics Research in the Budker Group

Part I. Principles and techniques

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Axion Detection With NMR

Magnetic Field measurements with Csmagnetometers

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Time Reversal and the electron electric dipole moment. Ben Sauer

EDM measurements with storage rings

EDM Measurements using Polar Molecules

Search for an atomic EDM in hyperpolarized liquid 129 Xe

Ultrasensitive Atomic Magnetometers

Progress on the Design of the Magnetic Field Measurement System for elisa

Electric dipole moments: theory and experiment

Characterization and Stabilization of Opto Power Fiber-Coupled Laser Diode Arrays. Abstract

Radon-EDM Experiment

The NMR Inverse Imaging Problem

The New Search for a Neutron EDM at the SNS

NMR, the vector model and the relaxation

Precision measurements with atomic co-magnetometer at the South Pole. Michael Romalis Princeton University

Fundamental Physics with Atomic Interferometry

Manifestations of Low-Mass Dark Bosons

Electron EDM Searches

The hunt for permanent electric dipole moments

The cryogenic neutron EDM experiment at ILL

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Electron spins in nonmagnetic semiconductors

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

Nuclear electric dipole moment in the Gaussian expansion method

Clock based on nuclear spin precession spin-clock

Spin Feedback System at COSY

Characterization and stabilization of fiber-coupled laser diode arrays

It may be that the next exciting thing to come along will be the discovery of a neutron or atomic or electron electric dipole moment.

Nuclear Schiff moment

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions

The search for permanent electric dipole moments Klaus Kirch Paul Scherrer Institut and ETH Zürich

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri

Determining α from Helium Fine Structure

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Quantum enhanced magnetometer and squeezed state of light tunable filter

Lorentz-violating energy shift for hydrogen in the presence of a weak magnetic field

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Lepton beam polarisation for the HERA experiments ZEUS and H1

Measuring Spin-Lattice Relaxation Time

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013

Investigations of optical pumping for magnetometry using an autolocking

Electric dipole moment experiments

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Electric Dipole Moments of Charged Particles

Parity Violation in Diatomic Molecules

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London

Chemistry 431. Lecture 23

1. Introduction. 2. New approaches

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

A next generation measurement of the electric dipole moment of the neutron at the FRM II

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

Optical Cavity Tests of Lorentz Invariance

Challenges in optics requirement and control of Storage Rings for Precision Measurement of EDM

Opportunities with collinear laser spectroscopy at DESIR:

Suppression Method of AC-Stark Shift in SERF Atomic. Magnetometer

Atomic Parity Violation

Measurement of the electron EDM using Cold YbF Molecules:

Improvements to the Mercury Electric Dipole Moment Experiment

Charged Particle Electric Dipole Moment Searches in Storage Rings

Micromechanical Instruments for Ferromagnetic Measurements

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Noise Correlations in Dual Frequency VECSEL

Electroweak Physics: Lecture V

Progress Toward a Search for a Permanent Electric Dipole Moment in Liquid 129 Xe

Spin-tracking studies for EDM search in storage rings

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

Accurate 3 He polarimetry using the Rb Zeeman frequency shift due to the Rb- 3 He spin-exchange collisions

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION

Nuclear Magnetic Resonance Spectroscopy

Radium Atom. Electron and Nuclear EDM s. Trapped Radioactive Isotopes: µ icro laboratories for Fundamental Physics

Klaus Jungmann 2006 EDM Experiments

National Physical Laboratory, UK

Overhauser Magnetometers For Measurement of the Earth s Magnetic Field

High Accuracy Strontium Ion Optical Clock

NMR: Formalism & Techniques

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

Fundamental MRI Principles Module Two

Neutron and electron electric dipole moments (EDMs)

Storage Ring Based EDM Search Achievements and Goals

Transcription:

RI Collaborator ==============================

20 CKM : 100 GeV (Plank scale): 10 19 GeV

EDM + + + - - - Time: t -t Spin: s -s EDM: d d + + + - - - d 0 T-violation CP-violation CPT theorem Standard Model (SM) : Predicted EDM is about 10 5 smaller than the present experimental upper limit Beyond the SM : Detectable EDM EDM CP

CP EDM E W W f L e +i f e -i f L CKM d n = 10 33 10 30 ecm QCD vacuum angle d 10 16 θ ecm n ~ f E ~ f One loop level EDM f L e φ γ ~ i e φ + i L R f R

EDM EDM EDM of bare nucleon + + + Quark EDM or Chromo EDM Neutron EDM EDM.. 129 Xe, 199 Hg, Ra, Rn EDM T violating interaction in nuclei Orbital electron: j=0 + + + EDM in nucleus Schiff moment Atomic EDM EDM.Rb, 133 Cs, 205 Tl, Fr EDM Electron EDM Electron EDM Enhancement Atomic EDM

E ext d E ext E ext E int d E ext + E int = 0 ( E + E ) 0 ext int = Schiff EDM EDM

potential φ ( R ) i = ( r) ρ() r eρ d R r i r + 3 1 d i Z R i J.S.M. Ginges, V.V. Flambaum, Phys. Rep. 397 (2004) 63 V. A. Dzuba et al., PRA 66, 012111 (2002) d r 3 r ϕ PT odd 1 1 1 1 = e i j k i j k i j 6 ρ R 2Z R 3 1 1 1 1 = 4πS δ ( R) Oijk i j k + Qij ( d ) i 6 R e 2Z 3 () r r r r d r + ( d ) ρ() r j 1 R r r i j d 3 r Schiff potential (rank 1) Octupole potential (rank 3) Schiff moment Electric octupole moment 1 2 3 5 1 2 3 I S = e () r rr d r d () r r d r = S Z ρ 10 3 I 1 2 ρ Oijk eρ() r ri rjrk r ( riδ jk + rjδik + rkδ ij ) 3 = d r 5

Atomic EDM is induced by the nuclear Schiff moment S d A = R A S d(xe) = 2.7 10 d(hg) = 4.0 10 18 17 Schiff moment is induced by CP odd nuclear force 3 ( S / efm ) ecm 3 ( S / efm ) ecm S = R N ξ CP CP odd pion exchange is dominated by chromo EDM of quarks ξ 1 = G F 3g f m 2 πpp 0 2 πmπ ~ ~ ( d d ) d u (T. Falk et al., hep ph/9904393)

129 Xe EDM experiment in USA Gr. 1 ( 5 ) 129 54 Xe S0 1984. Vold et. Al., Phys. Rev. Lett. 52 (1984) 2229. Repetation of observing the decaying precession signal. λ/4 laser B prec E E E light pipe d = ( 0.3 ± 1.1) 10 26 e cm PC Lock in 0 Lock in 1 Lock in 2 2001. Rosenberry and Chupp, Phys. Rev. Lett. 86 (2001) 22. Operation of continuous spin maser oscillation in double species (129Xe and 3He). d = (0.7 ± 3.3) 10 27 e cm

199 Hg EDM experiment in USA Gr. 1 ( 6 ) 199 80 Hg S0 Washington univ. Gr. 1987. Lamoreaux et. al., Phys. Rev. Lett. 59 (1987) 2275. d = (0.7 ± 1.5) 10 26 ecm : 1995. Jacobs et. Al., Phys. Rev. A 52 (1995) 3521. d = ( 1.0 ± 3.6) 10 28 e cm 2001. Romalis et. al., Phys. Rev. Lett. 86 (2001) 2505. d = ( 1.06 ± 0.49) 10 Now minor improvements. d 10 28 ecm 28 e cm

EDM Experimental upper limit from different elements In the MSSM (Minimal Super Symmetric Model) New CP violating phases θ A, θ µ are naturally considered to be O(1) M=250GeV M=500GeV M: Energy scale of SUSY breaking T. Falk et al., hep ph/9904393

Expected frequency shift Assuming d = 10-28 ecm B=1 G, E=+10 kv/cm z B +E B=1 G, E= 10 kv/cm z B E y ω + t x ν + = ( 1.19 10 4.84 10 3 10 ) Hz ν = ( 1.19 10 y ω t x + 4.84 10 3 10 ) Hz B +E B -E ν = 1 10 9 Hz n cycle n+1 cycle A difference of 1 cycle in 10 9 sec. 31years 259days 2hours

1 P : Polarization δd PEτ NT / τ N : Number of particles T : Measurements Time τ : Spin Coherence Time E : Electric Field

Spin exchange with optical pumped Rb atom P > 10 % for Xe atomic density of 10 18 /cm 3 Rb ~10 18 10 19 atom/cm -3 129 Xe No chemical interaction No quadrupole interaction of nucleus ( I=1/2 ) Continuous spin maser technique Transverse spin Free precession Transverse spin Spin maser state Time Time

W. Rb Happer, Rev. Mod. Phys. 44 (1972) 169. 5P 1/ 2 D1 794.7 nm 5S 1/ 2 m s 1 = 2 m s 1 = + 2 Rb Rb van der Waals

Pyrex baking Coating Rb SurfaSil γ se PXe = PRb Xe γ + Γ se

Γ W = 9.5 10 4 /s T W = 1050 s P = 40 70 % @ 200torr (10 18 /cm 3 )

SurfaSil

1. Accumulation of decaying precession + + + δν final T T T ind 1 1 1 = δν = = n n T T 2. Continuous spin precession total δν final 1 = δφ = T total T 3/ 2 tatal T Total

Spin MASER Transverse magnetic field - synchronism with spin precession - Phase : perpendicular to the transverse polarization Amplitude : proportional to the transverse polarization Polarization s growing (pumping effect) Relaxation, pumping B 0 T2 relaxation Feedback torque Polarization vector : M Feedback torque Polarization Feedback field : B fb Population inversion Feedback EM-field synchronism with emitted photon pump Zeeman level Feedback system

Nuclear Spin Maser (spin-coil coupling) 129 Xe polarization vector P = S /S Static field B 0 = (0, 0, B 0 ) Oscillating field B = (B x, B y, 0) B FB L B 0 dp P follows the Bloch equations: x d t dp y d t dp z d t Px = γ ( PB y 0 PB z y) T2 Py = γ ( PB z x PB x 0 ) T Pz = γ ( PB x y PB y x) + ( P0 Pz) G. T 2 1,, relaxation term Pumping term I npq C γ B = 1 0 LC M.G. Richards, JPB 21 (1988) 665: 3 He spin maser T. Chupp et al., PRL 72 (1994) 2363: 129 Xe spin maser B () t P () t x B () t P () t y y x 1 γ 2 2 ηµ 1 0 Q hi[ n] P0 > T2

Nuclear spin maser at low frequency ( low B 0 -field ) Low magnetic field B 0 ( < 0.1 G ): low field fluctuation introduce of high precision magnetometer B 0 < 0.1 G ν 0 < 100 Hz spin precession : optical detection Continuous oscillation through the feedback system Detection of Xe spin direction ( with probe laser) B 0 mg Probe laser beam Feedback coil Phase shifter Producing a transverse magnetic field (delayed by 90 in phase to precession signal) Nuclear spin Photo diode Pumping laser beam Lock in detection PLA 304 (2002) 13. A. Yoshimi et al.

Optical detection of nuclear spin precession Transverse-polarization transfer : Rb atom Xe nuclei (re-polarization) Rb dp dt Rb Xe = γ se( PXe PRb ) ΓsdP = γ '[ Xe]( P ) Rb Xe PRb ΓsdPRb γ [Xe] = 7 10 3 /s, Γ sd = 0.2 /s Time constant of spin transfer: 10-4 s Precession frequency of < khz Probe laser beam : single mode diode laser (794.7nm) P Rb 0.3 ms 0 0.4 0.8(ms) Xe After half-period precession Xe Circular polarization (modulated by PEM) Xe Rb Xe Xe Rb Xe

Experimental apparatus Pumping LASER Tunable diode laser λ = 794.7 nm ( Rb D1 line ), λ = 3 nm Output: 18 W Solenoid coil (for static field) B 0 = 28.3 mg ( I = 3.58 ma) Magnetic shield (3 layers ) Parmalloy Size : l = 100 cm, d = 36, 42, 48 cm Shielding factor : S = 10 3 Si photo diode Freq. band width: 0 500 khz NEP: 8 10-13 W/Hz Probe LASER PEM Mod. Freq. 50 khz Heater T cell = 60 ~ 70 Xe gas cell 18 mm Enriched 129 Xe : 230 torr Rb : ~ 1 mg Pyrex spherical grass cell SurfaSil coated Tunable diode laser with external cavity λ = 794.7 nm ( Rb D1 line ), line width 1MHz Output: 50 mw

129 Xe free precession signal (FID signal) Static magnetic field B 0 = 28.3 mg (ν(xe)=33.5 Hz) 90 RF pulse 33.5 Hz, t = 3.0 ms, B 1 = 70 mg ) Transverse relaxation T 2 = 350 s Signal (mv) 0.2 0.0-0.2 T 2 350 s 0 100 200 300 400 500 600 Time (s) 0.16 Frequency: 0.00 ν beat = ν prec ν ref = -0.16 100 110 120 0.23Hz

B 0 = 30.6 mg ν 0 = 36.0 Hz Signal (V) 0.8 0.4 0.0-0.4-0.8 0 20000 40000 60000 80000 Time (s) transient steady-state oscillation 0.8 0.2 0.4 0.1 0.0 0.0-0.4-0.1-0.2-0.8 0 1000 2000 3000 4000 5000 60000 60020 60040

Various transients depending on the feedback strength Feedback Gain 4 µg/0.1mv 10 µg/0.1mv 14 µg/0.1mv Signal (mv) Signal (mv) Signal (mv) 0.2 0.0-0.2 0 1000 2000 3000 4000 0.2 0.0-0.2 0 1000 2000 3000 4000 0.2 0.0-0.2 0 1000 2000 3000 4000 28 µg/0.1mv Signal (mv) 0.2 0.0-0.2 0 1000 2000 3000 4000 Time (s)

(Hz) 10 5 10 6 10 7 10 8 10 9 τ 3/ 2 δν τ 1 δν τ 10 2 10 3 10 4 10 5 (s) Maser beat frequency (mhz) 9 nhz @ 3x10 4 s 123.3 123.2 123.1 123.0 122.9 5000 s maser Allan = 29 Hz 1 2 3 4 5 Run#

Rb Linear polarized light D. Budker et al.,pra 62 (2000) 043403. 2g F µ B Bz γ ϕ = 2g F µ B B 1+ γ z l 2 2l0 k B Alkali vapor(rb) Faraday rotation 1 10 4 rad/g, 4 10-12 G/ Hz (B < 0.1G) γ 0 n 1+ 2πχ ± ( ω) 0 2 ( ω ω0 m g F µ BBz ) + iγ 0 ϕ B Yu.P. Malakyan et al.,pra 69 (2004) 013817.

D. Budker et al., Rev.Mod.Phys. 74 (2002) 1153. Ω M =1 khz B=0.7 mg alignment

Probe laser Linier polarizer λ 2 Shield cell Photo elastic modulator Linier polarizer Photo diode Ref. cell Photo diode Solenoid Ref. in 100 khz PEM driver Sig. in Fabry Perot interferometer Lock in regulator Lock in Amp AC Laser control 0.04 Feedback modulation Laser stabilization system (mrad) 0.00 0.04-1.0 0.0 1.0 (G)

Expected sensitivity for EDM experiment Installation of atomic magnetometer into low frequency spin maser Conceptual setup sensitivity : 10-11 10-12 G/ Hz δb 10-13 G ( δν(xe) 0.1 nhz ) Main source of frequency noise interaction with Rb atomic spins (10 9 /cc) P(Rb) 0.01 % ( re-polarization from Xe ) ν(xe) 0.2 nhz (δt 0.01 C) (E=10kV/cm) Probe light (Magnetometer) d(xe) = 10 29 10 30 ecm