( ) rad ( 2.0 s) = 168 rad

Similar documents
Dynamics of Rotational Motion

Physics 1114: Unit 5 Hand-out Homework (Answers)

Formula Formula symbols Units. s = F A. e = x L. E = s ε. k = F δ. G = t γ. e = at. maximum load original cross sectional area. s M E = = N/m.

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

Torque, Angular Momentum and Rotational Kinetic Energy

1121 T Question 1

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

Section 25 Describing Rotational Motion

Exam 3: Equation Summary

Rotational Motion: Statics and Dynamics

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet


b) (5) What average force magnitude was applied by the students working together?

Chapter 19 Webassign Help Problems

Force & Motion: Newton s Laws

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Translation and Rotation Kinematics

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie)

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

Rotational Kinetic Energy

Exam 3: Equation Summary

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians:

Physics 111 Lecture 5 Circular Motion

Circular Motion. Mr. Velazquez AP/Honors Physics

Lecture 13. Rotational motion Moment of inertia

Solutions Practice Test PHYS 211 Exam 2

Homework Set 4 Physics 319 Classical Mechanics. m m k. x, x, x, x T U x x x x l 2. x x x x. x x x x

Physics 231 Lecture 21

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

Physics Sp Exam #4 Name:

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

Principles of Physics I

Section 26 The Laws of Rotational Motion

LINEAR MOMENTUM Physical quantities that we have been using to characterize the motion of a particle

Physics 201 Lecture 18

Physics 1A (a) Fall 2010: FINAL Version A 1. Comments:

Chapter 7-8 Rotational Motion

PHYS 1114, Lecture 21, March 6 Contents:

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

Physics 110. Exam #1. September 30, 2016

Chapter 8. Accelerated Circular Motion

Conditions for equilibrium (both translational and rotational): 0 and 0

Physics 111 Lecture 10. SJ 8th Ed.: Chap Torque, Energy, Rolling. Copyright R. Janow Spring basics, energy methods, 2nd law problems)

SPH4U Magnetism Test Name: Solutions

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

Lecture 23: Central Force Motion

1131 T Question 1

MAGNETIC FIELD INTRODUCTION

Mon , (.12) Rotational + Translational RE 11.b Tues.

KEPLER S LAWS AND PLANETARY ORBITS

Magnetic Dipoles Challenge Problem Solutions

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room.

Ch. 4: FOC 9, 13, 16, 18. Problems 20, 24, 38, 48, 77, 83 & 115;

ω = θ θ o = θ θ = s r v = rω

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

) 1.5"10 11 m. ( )( 1.99 "10 30 kg)

Physics 1A (b) Fall 2010: FINAL Version A 1. Comments:

Lab 10: Newton s Second Law in Rotation

Experiment 09: Angular momentum

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION

Physics 4A Solutions to Chapter 10 Homework

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7

PHYS 1410, 11 Nov 2015, 12:30pm.

Chapter 13 Gravitation

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc.

When a mass moves because of a force, we can define several types of problem.

HO 25 Solutions. = s. = 296 kg s 2. = ( kg) s. = 2π m k and T = 2π ω. kg m = m kg. = 2π. = ω 2 A = 2πf

Chapter 10 Solutions

Department of Physics, Korea University Page 1 of 5

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Midterm Exam #2, Part A

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

CHAPTER 5: Circular Motion; Gravitation

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

Chapter 4. Newton s Laws of Motion

Impulse and Momentum

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2.

PHY 171 Practice Test 3 Solutions Fall 2013

Transcription:

.) α 0.450 ω o 0 and ω 8.00 ω αt + ω o o t ω ω o α HO 9 Solution 8.00 0 0.450 7.8 b.) ω ω o + αδθ o Δθ ω 8.00 0 ω o α 0.450 7. o Δθ 7. ev.3 ev π.) ω o.50, α 0.300, Δθ 3.50 ev π 7π ev ω ω o + αδθ o ω ω o + αδθ.50 + 0.300 7π ( ) 3.93 3.) θ( t) a + bt + ct 3 ω dθ dt d dt ( a + bt + ct 3 ) bt + 3ct and α dω d dt dt ( bt + 3ct ) b + 6ct 4.) α.50, Δθ 80.0, t 5.00 Δθ 80.0 αt Δθ αt + ω o t o ω o t 5.00 5.00 ( ).50 ( ) ( ) 9.75 5.) D 0.00, ω o 0, ω 40, t 8.00 ω αt + ω o o α ω ω o t ( Δθ ω + ω o) t 6.) t 3.00, Δθ 6, ω 08 40 + 0 8.00 40 0 7.5 8.00 ( ) 560 ( Δθ ω + ω o) t o ω o Δθ t ω ( 6 ) 08 3.00 0 b.) ω αt + ω o o α ω ω o t 08 0 36 3.00

HO 9 Solution ( 7.) Δθ ω + ω o) t o () ubtituting () into () ω o Δθ t ω and () Δθ αt + ω o t Δθ αt + Δθ ω t t αt + Δθ ωt and Δθ ωt αt 8.) ω o 4.0, α 60, t 0 to t.0 then low down to ω 0 a Δθ 43 duing the peiod of acceleation Δθ α t + ω o t 60.0 ( ) + 4.0 (.0 ) 68 Δθ total Δθ + Δθ 68 + 43 600 b.) afte.0 the angula velocity i ω α t + ω o 60.0 o ω o 44.0 fo the peiod of deceleation c.) ( Δθ ω + ω o) t o t Δθ ω + ω o ω α t + ω o o α ω ω o t 0 44 6.0 ( ) + 4.0 44.0 ( 43 ) 0 +44.0 6.0 and t total t + t.0 + 6.0 8.0 4 9.) Δθ ev when blade low down fo ω to 0 ω ω o + αδθ o 0 ω + αδθ and α ω Δθ ω ev ( ) ω ω o + αδθ o 0 ω ( ) + αδθ and Δθ ( ω ) α 4ω 4 ev ω ( ev ) π 0.) Δθ 65 ev 30π, v 8.0 ev, v 4.0, D 0.80 o 0.40 ω v 8.0 0.40 70.0 and ω v 4.0 0.40 35.0 ω ω + αδθ o α ω ω Δθ 35.0 70.0 30π ( ) 4.50 b.) ω αt + ω o t ω ω α 0 35.0 4.50 7.8

HO 0 Solution.) 0.045, 0.005, v.00 The haft and the dik have the ae angula velocity ω v.00 800 0.0050 v ω 0.0450 ( ) 800 36.) t 3.00, 0.00, v 40.0, a 0.0 α a 0.0 0.00 50 b.) ( ) v( 3 ) ω 3 40.0 00 0.00 ω αt + ω o o ω o ω αt 00 50 3.00 ( ) 350 c.) ( Δθ ω + ω o) t 00 + 350 3.00 ( ) 85 d.) a 9.8 a v ω o ω 9.8 0.00 a 7.0 ω αt + ω o o t ω ω o α 7.0 350 50 6.86 3.) D 0.850 o 0.45, ω o 3.00 ev π ev 6.00π, α.50 ev π ev 3.00π b.) ω αt + ω o 3.00π.00 ( Δθ ω + ω o) t ( ) + 6.00π 8.3 + 6.00π.00 8.3 ( ) 3.57 Δθ 3.57 ev 3.75 ev π

HO 0 Solution 3.) (continued) c.) v ω 0.45 ( ) 8.3.0 d.) a ω 8.3 ( 0.45 ) 340.4 and a t α 0.45 ( ) 3.00π 4.00 a a t + a 4.00 + 340.4 340 4.) L 3 l L L L 3 I L i i 3 + L 3 l L L 3 3L 6 L 6 L 6 + l L 9 + 4L 9 + l I L 9 + 4L 9 + L L 6 9 + 4L 9 + L 4L 36 36 + 6L 36 + L L 36 36 7L 5.) L L 0.00 kg, L 0.400 fo all fou phee L I i i 4 L L ( 0.00 kg) ( 0.400 ) 0.064 kg L b.) fo all fou phee L I 4 L i i L ( 0.00 kg) ( 0.400 ) 0.03 kg 6.) 0.4 kg, L.0, L 3.0 L L fo all fou phee L I i i 4 L L ( 0.4 kg) ( 3.0 ).6 kg 7.) L 0.300, poke 0.30 kg, i.60 kg teat the i ha a hollow cylinde I MR and poke a od otated about thei end I 3 ML I I i + 8I poke i + 8 3 poke L I (.60 kg) ( 0.300 ) + 8 3 ( 0.30 kg) 0.300 ( ) 0. kg

8.) HO 0 Solution olid phee M 5.0 kg and R 0.0 about it cental axi I 5 MR ( 5.0 kg )( 5 0.0 ) 0.080 kg b.) hoop M 0.0 kg and R.5 about it cental axi pependicula to it diaete I MR ( 0.0 kg) (.5 ) 6.5 kg c.) hollow phee M 5.0 kg and R 3.00 about it cental axi I 3 MR ( 5.0 kg )( 3 3.00 ) 90 kg d.) olid cylinde M 50 kg and R.5 about it cental axi pependicula to it diaete I MR ( 50 kg )(.5 ) 69 kg

HO Solution.) 4.00 kg y y 3.00 ω.00.00 kg x y -.00 I i + + 3 3 i I ( 4.00 kg) ( 3.00 ) + (.00 kg) (.00 ) + ( 3.00 kg) ( 4.00 ) 9 kg 3 3.00 kg y -4.00 K Iω ω ( 9 kg ).00 84 J b.) v ω 3.00 ( ).00 6.0 v ω.00 ( ).00 v 3 3 ω 4.00 ( ).00 4.0 8.0 K i v i v + v + v 3 3 K 4.00 kg ( ) 6.0 +.00 kg ( ) 4.0 + 3.00 kg ( ) 8.0 84 J.) M x 0 x L - x I i i Mx + ( L x) it i at a iniu when di dx 0 ( ( ) ) 0 di dx d dx Mx + L x Mx + ( L x) ( ) Mx L + x 0 Mx L + x 0 x( M + ) L 0 x L M + the cente-of-a i x c i x i i M ( 0 ) + L M + L which i whee I i a iniu M +

.) (continued) b.) I M L + L L M + M + ( ) + L L I M L M + I M L M + ( ) + L L M L M + M + + L ( M + ) M L M + M + + L M + ( ) + L ( ) + L ( M + ) L ( M + ) 3 L + ( M + ) ( M + ) ( M + ) I M L ( M + ) + L ( ) M + M + M L + 3 L ( M + ) M + + ( ) ( M + ) I M L ( M + ) + M L + M L + 3 L M L + 3 L + ( M + ) ( M + ) L M + + 3 L 3 L I M L + M L + M L + 3 L M L 3 L + 3 L ( M + ) ML ( M + ) ML ( ) ( M + ) I M L + M L M + HO Solution M + 3 L ( M + ) ( M + ) 3.) olid cylinde a M and iu R oll down an incline height h and v 0 uing Conevation of Enegy and the botto of the incline a a efeence y h and y 0 K +U g +W othe K +U g and 0 +U g + 0 K + 0 o U g K Mgy Mv + Iω Mv + MR v R Mgy Mv + 4 MR v R Mv + 4 Mv 3 4 Mv v 4 3 gy gh 3 4.) olid phee a M and iu R oll down an incline height h and v 0 uing Conevation of Enegy and the botto of the incline a a efeence y h and y 0 U g K o Mgy Mv + Iω Mv + 5 MR v R Mgy Mv + 0 MR v R v 0 7 gy 0gh 7 Mv + 0 Mv 7 0 Mv

5.) HO Solution olid cylinde about an axi paallel to it cente of a and paing though it edge d R fo a olid cylinde I c MR and uing paallel-axi theoe I p I c + Md I p MR + MR 3 MR b.) hollow phee about an axi tangent to it uface d R fo a hollow phee I c 3 MR and uing paallel-axi theoe I p I c + Md I p 3 MR + MR 5 3 MR 6.) ey-go-ound M 640 kg and R 8.0 ω o 0 and ω ev 8 π ev π 4 uing the otational equivalent of the Wok-Enegy Theoe W ΔK Iω Iω o Iω MR ω 4 MR ω W ( 640 kg) 8.0 4 ( ) π 4 7,000 J 7.) hollow phee R 0.00 and M.0 kg olling down an incline L 0.0 and θ 30 v 0 and uing botto of incline a a efeence y Linθ and y 0 uing Conevation of Enegy U K o Mgy g Mv + Iω Mv + 3 MR v R Mgy Mv + 3 MR v R Mv + 3 Mv 5 6 Mv v 6 6 9.8 ( 0.0 )in30 5 gy 6gLinθ 7.67 5 5 ω v 7.67 R 38.3 0.00 L 8.) hollow cylinde R 0.40 and M.0 kg olling up an incline 30 θ 30 and v 4.00 uing botto of the incline a a efeence y 0 and y Linθ uing Conevation of Enegy K U o g Mv + Iω Mgy o Mv + ( MR ) v R Mv + ( MR ) v Mgy R Mv Mgy and y Linθ v g o L v ginθ 4.00 9.8 3.3 in30

HO Solution 9.) fo a hollow phee I c 3 MR and fo a olid phee I c 5 MR d uing paallel-axi theoe I p I c + Md 3 MR 5 MR + Md 3 R 5 R d 0 5 R 6 5 R d d 4 5 R R 5 0.) β R β y R the ditance y that the cente of a fall i y R Rcoβ R( coβ) the oent of inetia of the hoop about it cente of a i I c MR uing paallel-axi theoe I p I c + Md, the oent of inetia about an axi paing though it edge i uing Conevation of Enegy I p MR + MR MR the potential enegy coe fo the fact that the cente of a fall a ditance y and uing the equilibiu poition a a efeence y y and y 0 thi i conveted into otational kinetic enegy fo the hoop which i otating about it i U g K o Mgy I pω and ω Mgy I p ω MgR ( coβ ) MR g( coβ) R

HO Solution.) L 4.00, 5.0 N O φ 90.0 φ 90 v τ v v inφ ( 4.00 ) ( 5.0 N)in90 60 N ( ccw) O 0.0 φ φ 0 v τ v v inφ ( 4.00 ) ( 5.0 N)in0 5 N ( ccw) O 30.0 φ φ 30 v τ v v inφ ( 4.00 ) ( 5.0 N)in30 30 N ( ccw) 60.0 O.00 φ φ 60 v τ v v inφ.00 ( ) 5.0 N ( )in -60 ( ) 6 N cw ( ) O φ φ 80 v τ v v inφ ( 4.00 ) ( 5.0 N)in( 80 ) 0.).0 N 30.0 O.00 3.00 8.00 N φ φ 90 τ inφ ( 5.00 ) ( 8.00 N)in( 90 ) 40.0 N ( cw) φ φ 50 τ inφ (.00 ) (.00 N)in50.0 N ( ccw) τ net τ +τ 40.0 N +.0 N 8.0 N ( cw) 3.) 8.60 N, 4.30 N, 0.330 φ φ 90 τ inφ 0.330 ( ) 8.60 N ( )in 90 ( ).838 N cw ( ) φ φ 90 τ inφ 0.330 ( ) 4.30 N ( )in90.49 N ccw ( ) τ net τ +τ.838 N +.49 N.49 N ( cw) 4.) I 3.50 kg ω o 0, ω 600 ev π in 0π in ev 60 ω αt + ω o o α ω ω o t 0π 0 7.85 8.00

HO Solution 4.) (continued) uing Newton nd Law fo otation τ net τ Iα τ Iα 3.50 kg ( ) 7.85 7.5 N b.) K Iω ( 3.50 kg ) 0π 690 J 5.) 0.300, 50 N, I 4.00 kg φ τ inφ ( 0.300 ) ( 50.0 N)in90 5 N ( ccw) uing Newton nd Law fo otation τ net τ Iα α τ I 5 N 3.75 4.00 kg 6.) two dik D 0.075, M 0.050 kg joined by cylindical hub D 0.00, M 0.0050 kg fo the dik R D 0.0375 and fo the hub R D 0.0050 I I dik + I hub M R + M R I ( 0.050 kg) ( 0.0375 ) + ( 0.0050 kg) 0.0050 ( ) 7.0375 x 0-5 kg uing the lowet point a a efeence y h.0 and y 0 alo v ω 0 uing Conevation of Enegy K +U g +W othe K +U g o 0 +U g + 0 K + 0 o U g K gy Iω + v whee M + M ( 0.050 kg) + 0.0050 kg 0.05 kg ince the cod i attached to the hub ω v and gy R I v + R v I v R + v v I R + v gy I R + ( 0.05 kg) 9.8 (.00 ) 0.84 ( 7.0375 x 0-5 kg ) + 0.05 kg ( 0.0050 ) b.) the otational kinetic enegy i K ot Iω I v 0.84 R 7.0375 x ( 0-5 kg ) 0.993 J 0.0050 the tanlational kinetic enegy i K tan v 0.05 kg ( ) 0.84 0.0370 J the faction of which i otational i K ot 0.993 J 0.964 o 96.4 % otational K ot + K tan 0.993 J + 0.0370 J

L 7.) CM HO Solution otation eult fo the toque due to the weight of the od Mg τ g inφ L Mgin ( 90 ) LMg ( cw) fo a od otating about it end I 3 ML and uing Newton nd Law fo otation τ net τ Iα LMg α τ I 3 g L o α 3 g L (cw) 3 ML b.) the tip i a ditance L fo the axi of otation o a α L 3 g L 3 g 8.) T T.0 kg,.5 kg and the pulley i hollow cylinde M.0 kg, R 0.5 fo a hollow cylinde I MR Looking at foce in the diection of otion and applying Newton nd Law and a Rα T T T I T g a a τ Iα () T a T a τ g τ Iα () g T a RT RT MR a R cobining () and () and (3) g a + a + Ma ( + + M )a a g + + M (.5 kg) 9.8.0 kg +.5 kg +.0 kg 3.7 (3) T T Ma fo () α a R 3.7 0.5 T a.0 kg.8 ( ) 3.7 6.54 N fo () T g a ( g a).5 kg ( ) 9.8 3.7 9.80 N

HO Solution 8.) (again) could ue enegy conevation to find the peed of block (and ) afte falling a ditance h and elating it to the acceleation a uing the kineatic elationhip v v o + aδx. uing the lowet point a a efeence and tating fo et y h, y 0, and v 0 K +U g +W othe K +U g o 0 +U g + 0 K + 0 o U g K the final kinetic enegy include the otational kinetic enegy of the pulley and the tanlational kinetic enegy of the block only block contibute to change in gavitational enegy gy ( + )v + Iω ( + )v + I v R gy ( + )v + MR v ( R + )v + Mv gy ( + + M )v and v gy + + M gh + + M () v v o + aδx o v v + aδy o v 0 + ah ah () cobining () and () ah gh + + M o a g + + M (the ae eult a peviouly obtained) α can be obtained fo a and the tenion obtained by conideing the foce on the block and applying Newton nd Law to each block

HO 3 Solution.) M R R M fo unifo cylinde I MR M no lipping o acceleation a of the block and cylinde ae the ae and the angula acceleation of the pulley i elated to the acceleation by the elationhip a Rα and the linea velocity of the block and the cylinde ae the ae ue enegy conevation to find the peed of block M afte falling a ditance h and elating it to the acceleation a uing the kineatic elationhip v v o + aδy. uing the lowet point a a efeence and tating fo et y h, y 0, and v 0 K +U g +W othe K +U g o 0 +U g + 0 K + 0 o U g K the final kinetic enegy include the otational kinetic enegy of the pulley and the cylinde and the tanlational kinetic enegy of the block and cylinde only block M contibute to change in gavitational enegy Mgy ( M + M )v + I pulleyω + I cylindeω ( M )v + MR ω + M R Mgy Mv + 4 MR ω + 4 M ( 4R ) ω Mv + 4 MR v + MR v R R Mgy Mv + 4 MR v R + MR v R ( ) Mv + 4 MR v R + MR v 4R Mgy Mv + 4 Mv + 4 Mv Mv + 4 + 3 Mv 4 ( ) ω 3 Mgy Mv o v gy 3 gh 3 () v v o + aδy o v v + aδy o v 0 + ah ah () cobining () and () ah gh 3 o a g 3.) d D 0.500, 60 N. v o ω o 0, Δd 3.00, and t 4.00 φ D Δd 0.50 and Δθ 3.00 0.50 Δθ αt + ω o t αt o α Δθ t ( ) ( ).5 4.00 b.) c.) d.) ( Δθ ω + ω o) t ω t o ω Δθ t ( ) 6.0 4.00 W net ΔK K K o K and W net W v v d dcoθ o K dcoθ 60.0 N ( ) 3.00 ( )co0 80 J τ Iα o I τ α inφ α ( 0.50 )( 60.0 N)in90.5 0.0 kg

HO 3 Solution 3.) l 0.50, M 0.050 kg, contant angula velocity ω Δθ π π Δt 60 30 fo a lende od otating about one end I 3 Ml L Iω 3 Ml ω ( 0.050 kg) 0.50 3 ( ) π 30 3.7 x 0-5 kg v.0 / 4.) P 3.00 kg, v.0, 8.00 8.00 36.9 O φ v φ 43. v L v p v vinφ ( 3.00 kg) ( 8.00 ).0 in43. 73 kg 5.) M a 8.0 kg, L a.8, R a 0.5, I body 0.40 kg, ω 0.60 ev when a ae extended I I body + I a I body + M L a a 0.40 kg + ( 8.0 kg )(.8 ).56 kg when a ae bought in I I body + I a I body + M a R a uing Conevation of Angula Moentu ( L L ) 0.40 kg + ( 8.0 kg) ( 0.5 ) 0.90 kg I ω I ω o ω I.56 kg ω 0.60 ev.7 ev I 0.90 kg 6.) Δθ ev, Δt 6.00, I g 00 kg, an 80.0 kg, 0, and.00 with an at cente I I g + I an I body + an 00 kg + ( 80.0 kg) ( 0) 00 kg afte an ove I I g + I an I body + an 00 kg + ( 80.0 kg) (.00) 50 kg ω Δθ Δt ev ev 0.67 6 7.) unifo dik ω 7.0 ev, M, R and unifo tick M, L R fo the dik I I dik MR and uing Conevation of Angula Moentu ( L L ) I ω I ω o ω I 00 kg ω 0.67 ev 0.3 ev I 50 kg fo the dik and tick I I dik + I tick MR + ML MR + M ( R) 5 6 MR uing Conevation of Angula Moentu ( L L ) I ω I ω o ω I I ω MR 5 6 MR 7.0 ev 4. ev

HO 3 Solution 8.) I I, I I, ω ω uing Conevation of Angula Moentu ( L L ) I ω I ω o ω I I ω I I ω ω 9.) ey-go-ound D 4., I g 760 kg, ω 0.80 and fou en 65 kg, 0, D. I I g 760 kg and I I g + I en I g + 4 760 kg + 4( 65 kg) (. ) 907 kg uing Conevation of Angula Moentu ( L L ) I ω I ω o ω I 760 kg ω 0.80 0.48 I 907 kg 0.) b 0.0088 kg, v b 360, olid dik M 0.0 kg, R 0.300, ω 0 v b R the bullet becoe ebedded along a line 0.5 to the ight of the cente of the dik befoe tiking the dik the angula oentu of the bullet with epect to the axi of otation of the dik i L L b b v b b inφ b v b afte tiking the dik angula oentu of the dik and bullet i I I b + I dik b R b + MR uing Conevation of Angula Moentu ( L L ) o L I ω o ω L I b v b b R b + MR 0.0088 kg ω 0.0088 kg 0.5 ( ) 360 0.5 ( ) ( ) + 0.0 kg ( ) 0.30 ( ) the tie to ake one coplete evolution i the peiod T and T π ω 0.376 π 0.376 6.7

HO 3 Solution.) (again) the otation of the cylinde i due to the fictional foce between the cylinde and the uface that it i in contact with and the tenion in the cod doe not contibute Looking at foce in the diection of otion and applying Newton nd Law and a Rα f R T M T T I T g a a τ Iα () T f Ma g T Ma τ τ Iα τ Iα () Mg T Ma RT RT MR a R f R M ( R) α (3) T T Ma f R M R R ( ) a (4) f Ma cobining () and () and (3) and (4) Mg Ma + Ma + Ma + Ma 3Ma and a g 3 alo f Ma M g Mg 3 6 and ince f µ N µmg it follow that µ f Mg Mg 6 Mg 6 0.67