Properties and Problems Related to the Smarandache Type Functions

Similar documents
FLORENTIN SMARANDACHE

ANOTHER SET OF SEQUENCES, SUB-SEQUENCES, AND SEQUENCES OF SEQUENCES

Patterns related to the Smarandache circular sequence primality problem

HISTORY OF THE SMA RAN D A C H E. Department of Mathematics, University of Craiova Str. AI. 1. Cuza 13, Craiova lloo, Romania

THE PSEUDO-SMARANDACHE FUNCTION. David Gorski 137 William Street East Williston, NY (516)

SOME SMARANDACHE-TYPE MULTIPUCATIVE FUNCTIONS. Henry Bottomley.

Solutions to Problem Set 3 - Fall 2008 Due Tuesday, Sep. 30 at 1:00

WA DERI G WORLD SMARA DACHE UMBERS

FLORENTIN SMARANDACHE Numeralogy (I) or Properties of Numbers

Quantum Causality Threshold and Paradoxes

Groupoids and Smarandache Groupoids

A survey on Smarandache notions in number theory II: pseudo-smarandache function

arxiv: v1 [math.gm] 28 Mar 2016

Numbers and their divisors

Octavian Cira. Florentin Smarandache

MAT115A-21 COMPLETE LECTURE NOTES

Luhn Primes of Order ω

EASY PUTNAM PROBLEMS

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

Theory of Numbers Problems

Continued Fractions Expansion of D and Pell Equation x 2 Dy 2 = 1

ICS141: Discrete Mathematics for Computer Science I

A PARALLEL LOOP SCHEDULING ALGORITHM BASED ON THE SMARANDACHEf-INFERIOR PART FUNCTION

NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

ON PRIMALITY OF THE SMARANDACHE SYMMETRIC SEQUENCES. Sabin TABIRCA, Tatiana TABIRCA

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions

Try the assignment f(1) = 2; f(2) = 1; f(3) = 4; f(4) = 3;.

arxiv:math/ v1 [math.nt] 6 Apr 2005

A NOTE ON EXPONENTIAL DIVISORS AND RELATED ARITHMETIC FUNCTIONS

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers

CmSc 250 Intro to Algorithms. Mathematical Review. 1. Basic Algebra. (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b)

Part II. Number Theory. Year

On the number of semi-primitive roots modulo n

COMMENTS AND TOPICS ON SMARANDACEE

On products of quartic polynomials over consecutive indices which are perfect squares

HOMEWORK ASSIGNMENT 5

MATH 145 Algebra, Solutions to Assignment 4

Super Fibonacci Graceful Labeling

On Exponentially Perfect Numbers Relatively Prime to 15

Prof. Ila Varma HW 8 Solutions MATH 109. A B, h(i) := g(i n) if i > n. h : Z + f((i + 1)/2) if i is odd, g(i/2) if i is even.

Proof worksheet solutions

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Recitation 7: Existence Proofs and Mathematical Induction

Ch 7 Summary - POLYNOMIAL FUNCTIONS

Notes 6: Polynomials in One Variable

PRODUCTS THAT ARE POWERS. A mathematical vignette Ed Barbeau, University of Toronto

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

3.4 Introduction to power series

More Examples of Proofs

Solutions for November. f(x + f(y)) = f(x) + y

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

PM functions, their characteristic intervals and iterative roots

There Is No Speed Barrier in the Universe. and One Can Construct any Speed

8 Primes and Modular Arithmetic

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics

Section 4.4 Functions. CS 130 Discrete Structures

Math 314 Course Notes: Brief description

ON GENERALIZED BALANCING SEQUENCES

CONJECTURES ON PRIMES AND FERMAT PSEUDOPRIMES, MANY BASED ON SMARANDACHE FUNCTION (COLLECTED PAPERS)

On certain generalizations of the Smarandache. function

1 x i. i=1 EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA

OEIS A I. SCOPE

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes


PUTNAM TRAINING EASY PUTNAM PROBLEMS

Unit 2 Rational Functionals Exercises MHF 4UI Page 1

Contribution of Problems

PEN H Problems. n 5 = x 2 +y 2 +z 2 +u 2 +v 2 = xyzuv 65. (x+y) 2 2(xy) 2 = 1. x 3 +y 3 +z 3 +t 3 = 1999

Discrete dynamics on the real line

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY

FIITJEE ALGEBRA-2 Pre RMO

Math 319 Problem Set #2 Solution 14 February 2002

Chapter-2 Relations and Functions. Miscellaneous

CLASS - X Mathematics (Real Number)

A NOTE ON THE SMARANDACHE PRIME PRODUCT SEQTJENCE A.A.K.~AR. Department of Mathematics, Jahangimagar University, Savar, Dhaka 1342, Bangladesh

A Readable Introduction to Real Mathematics

MATH 361: NUMBER THEORY FOURTH LECTURE

Midterm 3 Review. Terms. Formulas and Rules to Use. Math 1010, Fall 2011 Instructor: Marina Gresham. Odd Root ( n x where n is odd) Exponent

Solutions to Assignment 1

PRACTICE PROBLEMS: SET 1

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1

Introduction to Abstract Mathematics

( 3) ( ) ( ) ( ) ( ) ( )

Number Theory Solutions Packet

6.1 Using Properties of Exponents 1. Use properties of exponents to evaluate and simplify expressions involving powers. Product of Powers Property

Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1

Functions and Their Graphs

Connections between connected topological spaces on the set of positive integers

0 Sets and Induction. Sets

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

ARITHMETIC OF POSITIVE INTEGERS HAVING PRIME SUMS OF COMPLEMENTARY DIVISORS

MODEL ANSWERS TO THE FIRST HOMEWORK

Chapter 3: Section 3.1: Factors & Multiples of Whole Numbers

Algebra Ph.D. Entrance Exam Fall 2009 September 3, 2009

One Pile Nim with Arbitrary Move Function

Transcription:

Properties and Problems Related to the Smarandache Type Functions Sebastian Martin Ruiz, Avda. De Regla, 43, Chipiona 11550 (Cadiz), Spain M. Perez, Rehoboth, Box 141, NM 87301, USA Abstract: In this paper we present the definitions and some properties of several Smarandache type functions that are involved in many proposed solved and unsolved problems and conjectures in number theory and recreational mathematics. Examples are also provided. Interesting solved problems related to them are attached as addenda to this article. 1. Introduction: The most known Smarandache Function, which became a classical function in the number theory, is the following: S: N* t N*, S(1) = 1, S(n) is the smallest integer such that S(n)! is divisible by n. S(6)=3, because 3! = 1$2$3 = 6, which is divisible by 6, and 3 is the smallest number with this property, i.e. 2! is not divisible by 6. S(8) = 4, S(11) = 11. This function has been very much studied in the last decade and interesting properties have been found related to it. 2. Properties: 2.1. Max {p, p prime and p divides n} [ S(n) [ n for any positive integer n. 2.2. If n = (p 1^s 1 ) $ (p 2^s 2 ) $ $ (p k^s k ), where p 1, p 2,, p k are distinct primes, then S(n) = max {S(p i^s i )} [ max { p i $ s i }. 1[ i [ k 1[ i [ k 2.3. Characterization of a prime number: Let p be an integer > 4. Then: p is prime if and only if S(p) = p. Proof: Let p be prime > 4, and suppose S(p) = m < p, then m! is not be divisible by p, therefore S(p) = p. Now, let S(p) = p and p g 4; suppose p is not prime, whence there exist two integers s and t, with s [ t < p, such that p = s$t, but then S(p) [ t g p because t! is divisible by s and by t in the same time (i.e. t! is divisible by p). Contradiction. 2.4 An exact formula to calculate the number of primes less than or equal to x (L. Seagull): If x is an integer m 4, then the number of prime numbers [ x is:

x S( k) ( x) = 1+ k= 2 k where S(k) is the classical Smarandache Function, and ÃaŒ means the interior integer part of a (the smallest integer greater than or equal to a). Proof: Knowing the Smarandache Function has the property that if p > 4 then S(p) = p if only if p is prime, and S(k) <= k for any k, and S(4) = 4 (the only exception from the first rule), we easily find an exact formula for the number of primes less than or equal to x. 4. Conjectures: 4.1. The diophantine equation S(n) = S(n+1) has no solutions. (L. Tutescu) 4.2. The diophantine equation S(n) + S(n+1) = S(n+2) has infinitely many solutions. (I. M. Radu) 5. More Smarandache Type Functions have been also considered and studied, such as: 5.1. Smarandache Double Factorial Function, Sdf(n) is the smallest integer such that Sdf(n)!! is divisible by n, where the double factorial m!! = 1$3$5$...$m, if m is odd; and m!! = 2$4$6$...$m, if m is even. n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SDF(n) 1 2 3 4 5 6 7 4 9 10 11 6 13 14 5 6 5.2. Smarandache-Kurepa Function: For p prime, SK(p) is the smallest integer such that!sk(p) is divisible by p, where!m = 0! + 1! + 2! +... + (m-1)! p 2 3 7 11 17 19 23 31 37 41 61 71 73 89 SK(p) 2 4 6 6 5 7 7 12 22 16 55 54 42 24 5.3. Smarandache-Wagstaff Function: For p prime, SW(p) is the smallest integer such that W(SW(p)) is divisible by p, where W(m) = 1! + 2! +... + (m)! p 3 11 17 23 29 37 41 43 53 67 73 79 97 SW(p) 2 4 5 12 19 24 32 19 20 20 7 57 6 5.4. Smarandache Ceil Functions of k-th Order: Sk(n) is the smallest integer for which n divides Sk(n)^k. For example, for k=2, we have: n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 S2(n) 1 2 3 2 5 6 7 4 3 10 11 6 13 14 15 4

5.5. Pseudo-Smarandache Function: Z(n) is the smallest integer such that 1 + 2 +... + Z(n) is divisible by n. n 1 2 3 4 5 6 7 Z(n) 1 3 2 3 4 3 6 5.6. Smarandache Near-To-Primordial Function: SNTP(n) is the smallest prime such that either p# - 1, p#, or p# + 1 is divisible by n, where p#, of a prime number p, is the product of all primes less than or equal to p. n 1 2 3 4 5 6 7 8 9 10 11... 59... SNTP(n) 2 2 2 5 3 3 3 5? 5 11... 13... 6. Other Smarandache Type Functions also studied in the last years are: 6.1. Let f: Z h Z be a strictly increasing function and x an element in R. Then: a) Inferior Smarandache f-part of x, ISf(x), is the smallest k such that f(k) [ x < f(k+1). b) Superior Smarandache f-part of x, SSf(x) is the smallest k such that f(k) < x [ f(k+1). Particular cases: a) Inferior S-Prime Part: For any positive real number n one defines ISp(n) as the largest prime number less than or equal to n. 2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,17,17,19,19,19,19,23,23. b) Superior S-Prime Part: For any positive real number n one defines SSp(n) as the smallest prime number greater than or equal to n. 2,2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23. c) Inferior S-Square Part: For any positive real number n one defines ISs(n) as the largest square less than or equal to n. 0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16,16,16,16,16,16,25,25. b) Superior S-Square Part: For any positive real number n one defines SSs(n) as the smallest square greater than or equal to n. 0,1,4,4,4,9,9,9,9,9,16,16,16,16,16,16,16,25,25,25,25,25,25,25,25,25,36. d) Inferior S-Cubic Part: For any positive real number n one defines ISc(n) as the largest cube less than or equal to n.

0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,27,27. e) Superior S-Cube Part: For any positive real number n one defines SSs(n) as the smallest cube greater than or equal to n. 0,1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27. f) Inferior S-Factorial Part: For any positive real number n one defines ISf(n) as the largest factorial less than or equal to n. 1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24. g) Superior S-Factorial Part: For any positive real number n one defines SSf(n) as the smallest factorial greater than or equal to n. 1,2,6,6,6,6,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,120. Remark 1: This is a generalization of the inferior/superior integer part of a number. 6.2. Let f: Z h Z be a strictly increasing function and x an element in R. Then: Fractional Smarandache f-part of x, FSf(x) = x - ISf(x), where ISf(x) is the Inferior Smarandache f-part of x defined above. Particular cases: a) Fractional S-Prime Part: FSp(x) = x - ISp(x), where ISp(x) is the Inferior S-Prime Part defined above. Example: FSp(12.501) = 12.501-11 = 1.501. b) Fractional S-Square Part: FSs(x) = x - ISs(x), where ISs(x) is the Inferior S-Square Part defined above. Example: FSs(12.501) = 12.501-9 = 3.501. c) Fractional S-Cubic Part: FSc(x) = x - ISc(x), where ISc(x) is the Inferior S-Cubic Part defined above. Example: FSc(12.501) = 12.501-8 = 4.501. d) Fractional S-Factorial Part: FSf(x) = x - ISf(x), where ISf(x) is the Inferior S-Factorial Part defined above. Example: FSf(12.501) = 12.501-6 = 6.501. Remark 2.1: This is a generalization of the fractional part of a number. Remark 2.2: In a similar way one defines: - the Inferior Fractional Smarandache f-part: IFSf(x) = x - ISf(x) = FSf(x); - and the Superior Fractional Smarandache f-part: SFSf(x) = SSf(x) - x; for example: Superior Fractional S-Cubic Part of 12.501

= 27-12.501 = 14.499. 6.3. Let g: A h A be a strictly increasing function, and let "~" be a given internal law on A. Then we say that f: A h A is smarandachely complementary with respect to the function g and the internal law "~" if: f(x) is the smallest k such that there exists a z in A so that x~k = g(z). Particular cases: a) S-Square Complementary Function: f: N h N, f(x) = the smallest k such that x$k is a perfect square. 1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23,6,1,26,3,7. b) S-Cubic Complementary Function: f: N h N, f(x) = the smallest k such that x$k is a perfect cube. 1,4,9,2,25,36,49,1,3,100,121,18,169,196,225,4,289,12,361,50. More generally: c) S-m-power Complementary Function: f: N h N, f(x) = the smallest k such that x$k is a perfect m-power. d) S-Prime Complementary Function: f: N h N, f(x) = the smallest k such that x+k is a prime. 1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0,1,0,5. 6.4. S-Multiplicative Function: is a function f : N* h N* such that for any (a, b) = 1, f(a$b) = max {f(a), f(b)}; [i.e. it reflects the main property of the Smarandache function]. The following functions are obviously S-multiplicative: a) The constant function f : N* h N*, f(n) = 1. b) The Smarandache function S: N* h N, S(n) = max{ p p! : n}. Certainly, many properties of multiplicative functions can be translated for S-multiplicative functions. 7. Functional Smarandache Iterations: 7.1. Functional Smarandache Iteration of First Kind: Let f: A h A be a function, such that f(x) [ x for all x, and min {f(x), x A} m m 0 g -. Let f have p m 1 fix points: m 0 [ x 1 < x 2 <... < x p. [The point x is called fix if f(x) = x.] Then: SI1 f (x) = the smallest number of iterations k such that f(f(...f(x)...)) = constant.

Example: Let n > 1 be an integer, and d(n) be the number of positive divisors of n, d: N h N. Then SI1 d (n) is the smallest number of iterations k such that d(d(...d(n)...)) = 2; because d(n) < n for n > 2, and the fix points of the function d are 1 and 2. Thus SI1 d (6) = 3, because d(d(d(6))) = d(d(4)) = d(3) = 2 = constant. SI1 d (5) = 1, because d(5) = 2. 7.2. Functional Smarandache Iteration of Second Kind: Let g: A h A be a function, such that g(x) > x for all x, and let b > x. Then: SI2 g (x, b) = the smallest number of iterations k such that g(g(...g(x)...)) m b. Example: Let n > 1 be an integer, and G(n) be the sum of positive divisors of n (1 and n included), G: N h N. Then SI2 G (n, b) is the smallest number of iterations k such that G (G (...G(n)...)) m b, because G(n) > n for n > 1. Thus SI2 G (4, 11) = 3, because G(G(G(4))) = G(G(7)) = G(8) = 15 m 11. 7.3. Functional Smarandache Iteration of Third Kind: Let h: h A be a function, such that h(x) < x for all x, and let b < x. Then: SI3 h (x, b) = the smallest number of iterations k such that h(h(...h(x)...)) [ b. Example: Let n be an integer and gd(n) be the greatest divisor of n, less than n, gd: N* h N*. Then gd(n) < n for n > 1. SI3 gd (60, 3) = 4, because gd(gd(gd(gd(60)))) = gd(gd(gd(30))) = gd(gd(15)) = gd(5) = 1 [ 3. References:

[1] Ashbacher, C., "A Note on the Smarandache Near-To-Primordial Function", <Smarandache Notions Journal>, Vol. 7, No. 1-2-3, 46-49, 1996. [2] Ashbacher, C., "Some Properties of the Smarandache-Kurepa and Smarandache- Wagstaff Functions", <Mathematics and Informatics Quarterly>, Vol. 7, No. 3, pp. 114-116, 1997. [3] Begay, A., "Smarandache Ceil Functions", in <Bulletin of Pure and Applied Sciences>, India, Vol. 16E, No. 2, 227-229, 1997. [4] Castillo, Jose, "Other Smarandache Type Functions", http://www.gallup.unm.edu/~smarandache/funct2.txt [5] Dumitrescu, C., Seleacu, V., "Some notions and questions in number theory", Erhus Univ. Press, Glendale, 1994. http://www.gallup.unm.edu/~smarandache/snaqint.txt [6] Ibstedt, H., "Smarandache Iterations of First and Second Kinds", <Abstracts of Papers Presented to the American Mathematical Society>, Vol. 17, No. 4, Issue 106, 680, 1996. [7] Kashihara, K., "Comments and Topics on Smarandache Notions and Problems", Erhus Univ. Press, Vail, USA, 1996. http://www.gallup.unm.edu/~smarandache/kashihara.pdf [8] Mudge, Mike, "The Smarandache Near-To-Primordial (S.N.T.P.) Function", <Smarandache Notions Journal>, Vol. 7, No. 1-2-3, 45, 1996. [9] Popescu, Marcela, Nicolescu, Mariana, "About the Smarandache Complementary Cubic Function", <Smarandache Notions Journal>, Vol. 7, no. 1-2-3, 54-62, 1996. [10] Popescu, Marcela, Seleacu, Vasile, "About the Smarandache Complementary Prime Function", <Smarandache Notions Journal>, Vol. 7, No. 1-2-3, 12-22, 1996. [11] Ruiz, Sebastian Martin, Applications of Smarandache Function, Prime and Coprime Functions, American Research Press, Rehoboth, 2002; http://www.gallup.unm.edu/~smarandache/smruiz-ebook.pdf [12] Seagull, L., "The smarandache Function and the number of primes up to x", <Mathematical Spectrum>, University of Shielfield, Vol. 28, No. 3, 53, 1995/6. http://www.gallup.unm.edu/~smarandache/formula.txt [13] Smarandache, F., A Function in Number Theory, Analele Univ. Timisoara, XVIII, fasc. 1, 79-88, 1980; http://www.gallup.unm.edu/~smarandache/sfbook1.pdf [14] Smarandache, Florentin, "Only Problems, not Solutions!", Xiquan Publishing House, Phoenix-Chicago, 1990, 1991, 1993; http://www.gallup.unm.edu/~smarandache/opns.pdf [15] "The Florentin Smarandache papers" Special Collection, Arizona State University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA; [16] Tabirca, Sabin, "About S-Multiplicative Functions", <Octogon>, Brasov, Vol. 7, No. 1, 169-170, 1999. [17] Weisstein, Eric W., CRC Concise Encyclopedia of Mathematics, CRC Press, Boca raton, 1998. Other e-books on Smarandache Functions and Sequences can be downloaded from http://www.gallup.unm.edu/~smarandache/ebooks-otherformats.htm and research papers from http://www.gallup.unm.edu/~smarandache/math.htm.