Quantum Statistical Mechanics

Similar documents
A how to guide to second quantization method.

5.62 Physical Chemistry II Spring 2008

PHY688, Statistical Mechanics

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

Density matrix. c α (t)φ α (q)

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 10. Reading: Notes and Brennan Chapter 5

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

Lecture 4. Macrostates and Microstates (Ch. 2 )

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

The Feynman path integral

14 The Postulates of Quantum mechanics

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Thermodynamics and statistical mechanics in materials modelling II

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

STATISTICAL MECHANICS

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Thermodynamics and Kinetics of Solids 33. III. Statistical Thermodynamics. Â N i = N (5.3) N i. i =0. Â e i = E (5.4) has a maximum.

Q e E i /k B. i i i i

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

THEOREMS OF QUANTUM MECHANICS

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Fermi-Dirac statistics

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

The non-negativity of probabilities and the collapse of state

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

and Statistical Mechanics Material Properties

12. The Hamilton-Jacobi Equation Michael Fowler

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

Poisson brackets and canonical transformations

Statistical mechanics handout 4

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

= z 20 z n. (k 20) + 4 z k = 4

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Rate of Absorption and Stimulated Emission

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Canonical transformations

APPENDIX A Some Linear Algebra

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

Equilibrium Statistical Mechanics

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I

SL n (F ) Equals its Own Derived Group

SUPPLEMENTARY INFORMATION

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

The Second Anti-Mathima on Game Theory

2. Postulates of Quantum Mechanics. [Last revised: Friday 7 th December, 2018, 21:27]

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

Advanced Quantum Mechanics

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

Linear Approximation with Regularization and Moving Least Squares

Quantum Mechanics for Scientists and Engineers. David Miller

0.1 Required Classical Mechanics

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

V.C The Niemeijer van Leeuwen Cumulant Approximation

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

The von Neumann Hierarchy for Correlation Operators of Quantum Many-Particle Systems

II.D Many Random Variables

Lecture 20: Hypothesis testing

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Feb 14: Spatial analysis of data fields

Lecture 14: Forces and Stresses

k t+1 + c t A t k t, t=0

Solutions Homework 4 March 5, 2018

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006

Statistical mechanics canonical ensemble

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

The Geometry of Logit and Probit

coordinates. Then, the position vectors are described by

Lecture Notes 7: The Unruh Effect

NUMERICAL DIFFERENTIATION

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian,

NP-Completeness : Proofs

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

One can coose te bass n te 'bg' space V n te form of symmetrzed products of sngle partcle wavefunctons ' p(x) drawn from an ortonormal complete set of

8.592J: Solutions for Assignment 7 Spring 2005

PHYS 705: Classical Mechanics. Canonical Transformation II

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

Lagrangian Field Theory

Chap.5 Statistical Thermodynamics

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Quantum Mechanics I - Session 4

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

Transcription:

Chapter 8 Quantum Statstcal Mechancs 8.1 Mcrostates For a collecton of N partcles the classcal mcrostate of the system s unquely specfed by a vector (q, p) (q 1...q N, p 1...p 3N )(q 1...q 3N,p 1...p 3N ) (8.1) n 6N dmensonal phase space. The quantum mcrostate s unquely specfed by a vector ψ n nfnte dmensonal Hlbert space. The vector can be wrtten n terms of ts components n the poston bases, ( ) ψ q q dq ψ q ψ q dq (8.2) where s the dentty operator Î q q dq Ψ(q) q ψ. (8.3) s a complex valued functon (wave functon) wth normalzaton dq Ψ(q) 2 dqψ(q) Ψ(q) 1. (8.4) In classcal statstcal mechancs observables O(q, p) are functons of q p. Inquantumstatstcalmechancsthecorrespondngobservables are the Hermtan operators usually obtaned by substtuton of operatorsˆq ˆp actng on ket-vectors (or q actng on wave functons) on place q 59

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 60 of coordnates q p (.e. O(q, p) O(ˆq, ˆp)). However, because of the operator orderng ambguty the choce of a quantum observable mght not be unque, (e.g. pq ˆqˆp or ˆpˆq or 1 (ˆqˆp +ˆpˆq)...) the choce s usually 2 dctated by Hermtcty of the operator. Moreover, the value ofanoperator for a gven mcrostate s not unquely determned, but ts expectaton value can be obtaned from Born rule, ψ Ô ψ dqψ(q) ÔΨ(q). (8.5) 8.2 Densty matrx If the exact knowledge of the quantum mcrostate s not avalable, the system s sad to be n a not pure, butmxed state. Suchstatesarenotspecfedby aunquevectornhlbertspace,butbyacollectonofvector ϕ α } wth relatve probabltes p α },suchthat p α 1. (8.6) And the entropy of a mxed state s defned as α S α p α log p α. (8.7) Then, the ensemble average of a gven operator Ô s gven by Ô α p α ϕ α Ô ϕ α. (8.8) In a gven set of orthonormal bass, ψ n, the above expresson takes the followng form Ô p α ϕ α ψ n ψ n Ô ψ m ψ m ϕ α α,n,m n,m ( ) p α ψ m ϕ α ϕ α ψ n ψ n Ô ψ m α n,m ψ m ˆρ ψ n ψ n Ô ψ m n,m ψ m ˆρÔ ψ m Tr(ˆρÔ) (8.9)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 61 where the so-called densty matrx s defned as ˆρ α p α ϕ α ϕ α. (8.10) Ths s the Hermtan operator whch replaces the probablty dstrbuton functon n classcal phase space. Let ψ n be the energy egenstates, then ψ n t ˆρ(t) ψ m p α ψ n ϕ α (t) ϕ α (t) ψ m t α p α ( ψ n t ϕ α ϕ α ψ m + ψ n ϕ α ) t ϕ α ψ m α ( p α ( ψ n Ĥ ϕ α ϕ α ψ m + ψ n ϕ α ) ) t ψ m ϕ α α α p α (E n ψ n ϕ α ϕ α ψ m E m ψ n ϕ α ( ψ m ϕ α ) ) ψ n ˆρ (E n E m ) ψ m ψ n Ĥ ˆρ ˆρĤ ψ m (8.11) Thus, ndependently of bass we get the on Neumann equaton: ˆρ(t) [Ĥ, ˆρ], (8.12) t whch s a quantum verson of Louvlle s equaton (3.23) obtaned(once agan) by a formal substtuton of Posson brackets wth commutator,.e., } [, ]. 8.3 Statstcal ensembles In the equlbrum ˆρ(t) [Ĥ, ˆρ] 0 (8.13) t whch can be satsfed whenever ˆρ(Ĥ) s a functon of Hamltonan operator Ĥ. Thssuggestthefollowngstatstcalensembles 1. Mcrocanoncal ensemble: E) ρ(ĥ) δ(ĥ Ω(E) (8.14)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 62 In energy egenstates bass ψ n, ψ n ρ ψ m α p α ψ n ϕ α ϕ α ψ m 1 Ω(E) f E n E m n 0 otherwse (8.15) 2. Canoncal ensemble: where s the quantum partton functon. e βĥ ρ(ĥ) Z N (β) ( ) Z N (β) Tr e βĥ (8.16) (8.17) 3. Gr canoncal ensemble: where ˆN ρ(ĥ) e βĥ+βµ Z N (β) ( ) Z(z,, T) Tr e βĥ+βµ ˆN (8.18) (8.19) ˆN s an operator representng the number of partcles. For a sngle partcle n a box descrbed by Hamltonan The tme-ndependent Schrodnger equaton s the wave functons are gven by Ĥ 2. (8.20) 2m Ĥ ψ p E(p) ψ p (8.21) wth soluton 2 2m Ψ p(q) E(p)Ψ p (q) (8.22) Ψ p (q) ψ q ψ p 1 e p q. (8.23) The correspondng energes are E(p) 2 p 2 2m (8.24)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 63 the partton functon s Z 1 Tr(ρ) e β 2 p 2 2m (8.25) p dp β 2 p 2 (2π) 3 e 2m (8.26) ( ) 3/2 2m (2π) 3 dze z2 (8.27) 3 β ( ) 3/2 2πm (8.28) h 3 β λ 3 (8.29) where λ h 2πmkT. (8.30) 8.4 Indstngushable partcles The multpartcle Hlbert space s formed by a tensor product,.e. ψ q1,ψ q2,... ψ q1 ψ q2... (8.31) In quantum mechancs only certan states ψ correspondng to wave-functons Ψ(q 1, q 2,...) ψ q1,ψ q2,... ψ (8.32) are nterpreted as partcles n postons q 1, q 2,... For example, for a two partcles system the probablty of fndng the partcles n postons q 1 q 2 s gven by Born rule, Ψ(q 1, q 2 ) 2 ψ q1,ψ q2 ψ 2. (8.33) Clearly, f we exchange the two dentcal partcles the system would not be expermentally dstngushable. Ths leads to the dea of ndstngushable partcles. Indstngushable partcles: The square of wave functon s nvarant under nterchange of any par of partcles,.e. Ψ(..., q m,..., q n,...) 2 Ψ(..., q n,..., q m,...) 2. (8.34)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 64 There are two possble solutons (correspondng to bosons) (correspondng to fermons) Ψ(..., q m,..., q n,...) +Ψ(..., q n,..., q m,...) (8.35) Ψ(..., q m,..., q n,...) Ψ(..., q n,..., q m,...)., (8.36) but more generally we can have (correspondng to anyons) Ψ(..., q m,..., q n,...) e θ Ψ(..., q n,..., q m,...) wth θ 0nor θ π. For N partcles the total number of permutatons s N! whch forms a group S N of permutatons P S N actng on the Hlbert space. Clearly, (8.35) (8.36) putsomerestrctonsontheallowedstatesnthehlbert space allows only two types of ndstngushable partcles: Bosons, correspondng to symmetrc wave-functons P Ψ(q 1, q 2,..., q N ) ψ q1,ψ q2,..., ψ qn +Ψ(q 1, q 2,..., q N ) ψ q1,ψ q2,..., ψ qn (8.37) Fermons, correspondng to ant-symmetrc wave-functons P Ψ(q 1, q 2,..., q N ) ψ q1,ψ q2,..., ψ qn ( 1) p Ψ(q 1, q 2,..., q N ) ψ q1,ψ q2,..., ψ qn (8.38) where the party of permutatons s defned as ( 1) p +1 f P nvolves an even number of bnary exchanges 1 f P nvolves an odd number of bnary exchanges. Thus, to solve the system n addton to Hamltonan one must also specfy the allowed egenstates or the statstcs of partcles (.e. bosonsoffermons). Consder N partcles n a box of volume descrbed by Hamltonan Ĥ N N 2 Ĥ n 2m n. (8.39) n1 For each partcle separately t was already shown that the energy egenstates ψ p can be expressed n the poston bass as ψ p 1 e p q ψ q dq. (8.40) n1

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 65 For non-nteractng partcles we can form a tensor product energy egenstate state,.e. ψ p1,ψ p2,..., ψ pn N 2 e N n1 pn qn ψ q1,ψ q2,..., ψ qn dq 1...dq N (8.41) such that Ĥ ψ p1,ψ p2,..., ψ pn 2 N n1 p2 n 2m ψ q1,ψ q2,..., ψ qn. (8.42) However, ths product vector does not satsfy bosonc (8.37), nor fermonc (8.38) statstcsmposedbythendstngushabltyassumpton. For ndstngushable partcles the state vector must satsfy ether p ψ p1,ψ p2,..., ψ pn + n p! N! P n ψ p1,ψ p2,..., ψ pn (8.43) N! for bosons or n1 n1 ψ p1,ψ p2,..., ψ pn 1 N! ( 1) Pn P n ψ p1,ψ p2,..., ψ pn (8.44) N! for fermons, where n p s the number of partcles wth wave vector p, n p N (8.45) p E p n p E. (8.46) p For two ndstngushable partcles the bosonc state vector s the fermonc state vector s ψ p1,ψ p2 + 1 2 ( ψ p1,ψ p2 + ψ p2,ψ p1 ) (8.47) ψ p1,ψ p2 + 1 2 ( ψ p1,ψ p2 ψ p2,ψ p1 ). (8.48) It should now be clear that two fermons cannot occupy the same state form condensate n contrast to bosons, 0, 1, 2,... for bosons n p (8.49) 0, 1 for fermons.

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 66 8.5 Mcrocanoncal ensemble Let us dvde the energy spectrum nto cells contanng g 1, g 2,...levelswth average energes E 1, E 2,... occupaton numbers n 1, n 2,.... It s convenent to defne : w -thenumberofwaysn partcles can be assgned to -th cell wth g levels W n } as the number of states of the system correspondng to the set of occupaton numbers n }, Γ(E) as the number of states of the system wth energy egenvalue between E E +. Then, W n } w (8.50) Γ(E) n } W n } (8.51) where the sum s taken over all sets of occupaton numbers satsfyng n N (8.52) E n E. (8.53) For Bose gas each level can be occuped by an arbtrary number of partcles,.e. w (n + g 1)! (8.54) n!(g 1)! W n } (n + g 1)!. (8.55) n!(g 1)! For Ferm gas each level can be ether occuped by a sngle partcle or not,.e. g! w (8.56) n!(g n )! W n } g! n!(g n )!. (8.57)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 67 As before we approxmate the entropy as S k log Γ k log W n } (8.58) where n } s the set of occupaton numbers whch maxmzes W n }. We can fnd n by maxmzng (8.55) (8.57), subject to constrans (8.52) (8.53). The result for bosons s for fermons s n n g z 1 e βe 1 (8.59) g z 1 e βe +1, (8.60) where β (nverse temperature) z (fugacty) are determned from E n E (8.61) n N. (8.62) Usng Strlng s approxmaton g 1 we can calculate the entropy for a Bose gas S k log W n } (log( n + g 1)! log n! log(g 1)!) (( n + g ) log( n + g ) n log n g log g ) ( ( ) ( g n log +1 + g log 1+ n )) n g ( βe log z g log ( ) ) 1 ze βe (8.63) z 1 e βe 1

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 68 for a Ferm gas S k log W n } (log(g )! log n! log(g n )!) (g log g n log n (g n ) log (g n )) ( ( ) ( g n log 1 g log 1 n )) n g ( βe log z g + log ( 1+ze ) ) βe. (8.64) z 1 e βe +1 Queston To Go: Can you defne a phenomenologcal gas (.e. W n p })whosestatstcssnetherbosoncnorfermonc? 8.6 Boltzmann gas The ndstngushablty of partcles assumpton was crucal for dervng equatons (8.63) (8.64). If we relax the assumpton then the countng goes as follows. There are N! n! ways to place N dstngushable partcles nto cells wth th cell havng n partcles. Each of the partcles can occupy g of the states n each cell. Thus, W n } N! g n n! f we use the correct Boltzmann countng (.e. 1 ), then N! W n } g n n! (8.65) the entropy of a Boltzmann gas would be gven by S k ( ) g n log z g e βe (βe log z) (8.66) n where n g ze βe. (8.67)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 69 In terms of energy levels n p ze βep where the constant z β are agan determned from (8.61) (8.62). The partton functon for the deal gas s Z N n p} gn p }e βenp} (8.68) where the number of states wth a gven set of occupaton numbers n p } s gven by 1 for Bose gas gn p } 1 for Ferm gas ( 1 ) (8.69) 1 N! N! p np! p n p! for Boltzmann gas. the occupaton numbers are also subject to constrans E p n p E (8.70) p n p N. (8.71) p For Boltzmann gas the partton functon can be re-expressedusngmultno- mal theorem Z N ( e βn p1 E p1 ) e βnp 2 Ep 2... 1 ( e βe p1 + e βe p2 ) N +... (8.72) n p1! n p2! N! n p} In a large volume lmt e βep p2 β dpe h 3 2m p Z N ( ) 3 ( ) 3/2 2m mkt dp h 3 β e p2 2πh 2 (8.73) ( ( ) ) 3/2 N mkt. (8.74) N 2πh 2 The gr partton functon for Boltzmann gas s gven by, ( ( ) ) 3/2 N Z(z,, T) z N z mkt Z N (,T). N 2πh 2 N0 N0

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 70 8.7 Quantum gases The gr partton functons for quantum gases s estmated as follows, Z(z,, T) z N Z N (,T) N0 z N e β np Ep N0 n p} ( ze βe p ) np N0 n p}... np1 n p2 ( ze βe p ) np (8.75) whch can be further smplfed ( ) n0 ze βe p n Z(z,, T) ( ) n0,1 ze βe p n 1 1 ze βep The correspondng equaton of state s P kt log Z log ( ) 1 ze βep log ( ) 1+ze βep the average occupaton number s ( 1+ze βe p ) for Bose gas for Ferm gas. for Bose gas for Ferm gas. (8.76) (8.77) n p 1 β E p log Z ze βep 1 ze βep ze βep 1+ze βep The fugacty can now be elmnated usng N z 1 z log Z z 1 e βep 1 1 z 1 e βep +1 whch agrees wth the constrant (8.71) for Bose for Bose gas for Ferm gas. for Bose gas for Ferm gas. (8.78) (8.79) N 1 z 1 e βep 1 n p.

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 71 Ferm N 1 z 1 e βep +1 n p. gases. In the lmt of nfnte volume the sum over energy levels n (8.77) (8.79) canbereplacedbyntegratonovermomentum,.e. dp, h 3 wth an excepton of p 0term whch mght dverge for a Bose gas when z 1. Ifweevaluatethepotentallydvergenttermseparately,then ) P kt dp4πp 2 p2 β log (1 ze h 3 2m log(1 z) for Bose gas 0 ) dp4πp 2 p2 β log (1+ze h 3 2m for Ferm gas. 0 dp4πp 2 1 h N 3 0 dp4πp 2 1 h 3 0 z 1 e βp2 /2m +1 Usng the followng denttes we obtan f 5/2 (z) f 3/2 (z) g 5/2 (z) g 3/2 (z) n1 n1 n1 n1 z 1 e βp2 /2m 1 + z n n 5/2 4 z n 4 n 3/2 ( 1) n+1 z n n 5/2 4 ( 1) n+1 z n n 3/2 4 z 1 z π 0 π 0 π 0 π 0 for Bose gas for Ferm gas. (8.80) (8.81) ( dxx 2 log 1 ze x2) (8.82) dxx 2 1 (8.83) z 1 e x2 1 ( dxx 2 log 1+ze x2) (8.84) dxx 2 1 z 1 e x2 +1 (8.85) P kt N g λ 3 5/2 (z) log(1 z) f λ 3 5/2 (z) g λ 3 3/2 (z)+ f λ 3 3/2 (z) z z 1 for Bose gas for Ferm gas for Bose gas for Ferm gas, (8.86) (8.87)

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 72 where 2π 2 λ (8.88) mkt s the so-called thermal wavelength. Theequatonofstatecanbeobtaned by elmnatng fugacty from equatons (8.91) (8.93). Note, that for Bosonc systems at very low temperatures, when the thermal wavelength s comparable wth nter-partcle separaton,.e. λ (/N) 1/3, a fnte fracton of all partcles can occupy the ground state p 0 leadng to the Bose-Ensten condensaton. We have seen before that the classcal statstcal mechancscanbederved startng from the molecular dynamcs. The key assumpton n the knetc theory of gases s the molecular chaos assumpton whch breaks the tme reversal nvarance. For more general dynamcal systems the rreversblty can also be derved usng entropy producton defned as the sum ofpostve Lyapunov exponents. The queston that s often asked s whether t s possble to derve the rreversblty n a more general context of quantum physcs. At frst sght, the Schrodnger equaton s tme-symmetrc whch does not seem to help much. On the other h, there s the measurement postulate where the observer s able to break the tme-reversal symmetry at the tme when the observaton s made. Can the rreversblty be justfed n the context of quantum statstcal mechancs? 8.8 Quantum correctons To obtan the equaton of state we must elmnate fugacty z from for Bose gases, or from P kt λ 3 g 5/2(z) log(1 z) (8.89) N λ 3 g 3/2(z)+ z 1 z P kt (8.90) λ 3 f 5/2(z) (8.91) N λ 3 f 3/2(z) (8.92) for Ferm gases. Ths can be done perturbatvely ether n lowdenstes(large nter-partcle dstance) hgh temperature (small thermal wavelength).

CHAPTER 8. QUANTUM STATISTICAL MECHANICS 73 Snce f 3/2 (z) g 3/2 (z) are monotoncally ncreasng functon for small z, n the lmt (/N) 1/3 λ, wehave g 3/2 (z) z n n1 z + z2 f 3/2 (z) n1 wth approxmate solutons z n 3/2 ( 1) n+1 z n n 3/2 2 3/2 ( +2 3/2 ( +... for Bose gases 2 3/2 z z2 +... for Ferm gases 2 3/2 (8.93) ) 2 for Bose gases ) 2 for Ferm gases. (8.94) Then correspondng equaton of state can be obtaned by the so-called vral expanson (.e. expanson n the powers of densty) ( ( ( ) ) ( 2 ( ) ) ) 2 2 Nλ P 3 2 3/2 +2 5/2 2 3/2 +... λ 3 kt ) λ 3 ( ( +2 3/2 ( ) ) ( 2 ( 2 5/2 +2 3/2 ) ) 2 2 +... (8.95) by only keepng the leadng (quantum) correcton to the equaton of state of Boltzmann gas we obtan ( ) P 5/2 Nλ3 kt N 1 2 for Bose gases ( ) 5/2 Nλ3 1+2 for Ferm gases. (8.96) for Bose gases for Ferm gases