EE 570: Location and Navigation

Similar documents
EE 570: Location and Navigation

EE 570: Location and Navigation

EE 570: Location and Navigation

Lecture. Aided INS EE 570: Location and Navigation. 1 Overview. 1.1 ECEF as and Example. 1.2 Inertial Measurements

EE 570: Location and Navigation

EE 565: Position, Navigation and Timing

EE 570: Location and Navigation

EE 570: Location and Navigation

EE 570: Location and Navigation

EE 570: Location and Navigation

EE 570: Location and Navigation

EE 570: Location and Navigation

EE 565: Position, Navigation, and Timing

Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 570: Location and Navigation

A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

EE 521: Instrumentation and Measurements

EE565:Mobile Robotics Lecture 6

AN IMPROVED STATIONARY FINE SELF-ALIGNMENT APPROACH FOR SINS USING MEASUREMENT AUGMENTATION

Theoretical Physics II B Quantum Mechanics. Lecture 5

ERRATA TO: STRAPDOWN ANALYTICS, FIRST EDITION PAUL G. SAVAGE PARTS 1 AND 2 STRAPDOWN ASSOCIATES, INC. 2000

Attitude Estimation Version 1.0

Navigation Mathematics: Angular and Linear Velocity EE 570: Location and Navigation

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation

Lecture 7 Discrete Systems

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements

Fundamentals of attitude Estimation

Poles and Zeros in z-plane

Quaternion based Extended Kalman Filter

Refinements to the General Methodology Behind Strapdown Airborne Gravimetry

VN-100 Velocity Compensation

Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm

EE C245 ME C218 Introduction to MEMS Design

A Mission to Planet Mars Gravity Field Determination

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

Optional Problems on the Harmonic Oscillator

Lecture V: The game-engine loop & Time Integration

Question 1: Spherical Pendulum

EE 570: Location and Navigation: Theory & Practice

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Dead Reckoning navigation (DR navigation)

UAVBook Supplement Full State Direct and Indirect EKF

NAWCWPNS TM 8128 CONTENTS. Introduction Two-Dimensinal Motion Three-Dimensional Motion Nonrotating Spherical Earth...

Low-Cost Integrated Navigation System

TIGHT GNSS/INS INTEGRATION AS A CONSTRAINED LEAST-SQUARES PROBLEM. David Bernal, Pau Closas, Eduard Calvo, Juan A. Fernández Rubio

Verification of a Dual-State Extended Kalman Filter with Lidar-Enabled Autonomous Hazard- Detection for Planetary Landers

We call these coupled differential equations, because as you can see the derivative of θ1 involves θ2 and the derivative of the θ2 involves θ1.

Spacecraft Attitude Dynamics for Undergraduates

A Sensor Driven Trade Study for Autonomous Navigation Capabilities

Accuracy Improvement of Low Cost INS/GPS for Land Applications (URL: Eun-Hwan Shin

Inertial Navigation System Aiding Using Vision

Introduction & Laplace Transforms Lectures 1 & 2

Part: Frequency and Time Domain

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Signal Processing in Cold Atom Interferometry- Based INS

Gyroscopes and statics

Lecture 38: Equations of Rigid-Body Motion

CS491/691: Introduction to Aerial Robotics

10.34 Numerical Methods Applied to Chemical Engineering

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

EE 570: Location and Navigation: Theory & Practice

AS3010: Introduction to Space Technology

Lecture 38: Equations of Rigid-Body Motion

Investigation of the Attitude Error Vector Reference Frame in the INS EKF

with Application to Autonomous Vehicles

Lecture D21 - Pendulums

Cubature Particle filter applied in a tightly-coupled GPS/INS navigation system

Searching for gravitational waves from neutron stars

Autonomous Mobile Robot Design

Understanding Precession

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Error Analysis and Reduction for Shearer Positioning using the Strapdown Inertial Navigation System

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

MEAM 510 Fall 2011 Bruce D. Kothmann

PHYS 705: Classical Mechanics. Euler s Equations

Quantum Physics Lecture 9

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

ESE319 Introduction to Microelectronics. Output Stages

Lecture IV: Time Discretization

GPS/INS Tightly coupled position and attitude determination with low-cost sensors Master Thesis

Inertial Navigation and Various Applications of Inertial Data. Yongcai Wang. 9 November 2016

Chapter 11. Angular Momentum

Nonlinear Observer Design for GNSS-Aided Inertial Navigation Systems with Time-Delayed GNSS Measurements

Inertial Odometry using AR Drone s IMU and calculating measurement s covariance

Two dimensional rate gyro bias estimation for precise pitch and roll attitude determination utilizing a dual arc accelerometer array

Supplementary Materials for

The SPHERES Navigation System: from Early Development to On-Orbit Testing

MEAM 510 Fall 2012 Bruce D. Kothmann

Lecture Schedule: Week Date Lecture Title

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion

Inertial Frame frame-dragging

Quantum Mechanics I Physics 5701

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Need for new theory Stern-Gerlach Experiments. Analogy with mathematics of light Feynman s double slit thought experiment

Research Article Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

EE C245 ME C218 Introduction to MEMS Design

Transcription:

EE 570: Location and Navigation Error Mechanization (ECEF) Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering Department, Emry-Riddle Aeronautical Univesity Prescott, Arizona, USA March 13, 2014 Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 1 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) [δ ψ e e ]δω e 0 Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) = Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) [δ ψ e e ] = Ĉe (δω i δω ie)ĉe = [Ĉ e(δ ω i δ ω ie) ] (1) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error Ċ e = Ce Ω e = Ce (Ω i Ω ie) = d dt [ (I +[δ ψ e e ] ])Ĉe = (I +[δ ψ e e ])Ĉe Ω e = [δ ψ e e ]Ĉe +(I +[δ ψ e e ]) Ĉ e = (I +[δ ψ e e ])Ĉe ( ˆΩ e + δω i δω ie) (I +[δ ψ e e ])Ĉe ˆΩ e + Ĉe (δω i δω ie) [δ ψ e e ] = Ĉe (δω i δω ie)ĉe = [Ĉ e(δ ω i δ ω ie) ] (1) δ ψ e e = Ĉe (δω i δ ω ie) (2) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 2 / 15

ECEF Attitude Error (cont.) δ ψ e e = Ĉe (δω i δ ω ie) = Ĉ e δω i Ĉe ( ω ie ˆ ω ie) = Ĉ e δω i (Ĉe C e I) ω e ie = Ĉ e δω i + δ ψ e e ωe ie Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 3 / 15

ECEF Attitude Error (cont.) δ ψ e e = Ĉe (δω i δ ω ie) = Ĉ e δω i Ĉe ( ω ie ˆ ω ie) = Ĉ e δω i (Ĉe C e I) ω e ie = Ĉ e δω i + δ ψ e e ωe ie δ ψ e e = Ĉe δω i Ω e ie δ ψ e e (3) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 3 / 15

Velocity v e e = Ce f i + ge 2Ωe ie v e e (4) ˆ v e e = Ĉe ˆ f i + ˆ g e 2Ωe ˆ v ie e e = (I [δ ψ e e ])Ce ( f i δ f i )+ ˆ g e 2Ωe ˆ v ie e e (5) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 4 / 15

Velocity v e e = Ce f i + ge 2Ωe ie v e e (4) ˆ v e e = Ĉe ˆ f i + ˆ g e 2Ωe ˆ v ie e e = (I [δ ψ e e ])Ce ( f i δ f i )+ ˆ g e 2Ωe ˆ v ie e e δ v e e = v e e ˆ v e e = [δ ψ e e ]Ce fi + Ĉe δ f i + δ g e 2Ωe ieδ v e e = [δ ψ e e ]Ĉe ˆ f i + Ĉe δ f i + δ g e 2Ωe ieδ v e e (5) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 4 / 15

Velocity v e e = Ce f i + ge 2Ωe ie v e e (4) ˆ v e e = Ĉe ˆ f i + ˆ g e 2Ωe ˆ v ie e e = (I [δ ψ e e ])Ce ( f i δ f i )+ ˆ g e 2Ωe ˆ v ie e e δ v e e = v e e ˆ v e e = [δ ψ e e ]Ce fi + Ĉe δ f i + δ g e 2Ωe ieδ v e e = [δ ψ e e ]Ĉe ˆ f i + Ĉe δ f i + δ g e 2Ωe ieδ v e e (5) δ v e e = [ Cˆ e ˆ f i ]δ ψ e e + Ĉe δ f i + δ g e 2Ωe ˆ v ie e e (6) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 4 / 15

Gravity Error δ g e 2g 0(ˆL ) ˆ r e e res e (ˆL ) ˆ r 2(ˆ r e e e e )T δ r e e (7) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 5 / 15

Position r e e = ve e (8) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 6 / 15

Position r e e = ve e (8) δ r e e = δ v e e (9) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 6 / 15

Summary - in terms of δ f i, δ ω i δ δ δ ψ e e v e e r e e Ω e ie 0 3 3 0 3 3 = [ Cˆ e ˆ f i ] 2Ωe 2g 0 ( ˆL ) ˆ r e ie res e e ( ˆL ) 2(ˆ r e ˆ r e e e )T 0 3 3 I 3 3 0 3 3 0 Ĉ e Ĉ e 0 δ f i δ ω i 0 0 δ ψ e e δ v e e δ r e e + (10) Attitude Velocity Gravity Position Summary Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 7 / 15

Notation Used Truth value Measured value x x Estimated or computed value ˆ x Error δ x = x ˆ x Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 8 / 15

Notation Used Truth value Measured value Estimated or computed value x x Nothing aove ˆ x Error δ x = x ˆ x Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 8 / 15

Notation Used Truth value Measured value Estimated or computed value x x ˆ x Use tilde Error δ x = x ˆ x Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 8 / 15

Notation Used Truth value Measured value Estimated or computed value x x ˆ x Error δ x = x ˆ x Use hat Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 8 / 15

Notation Used Truth value Measured value x x Estimated or computed value ˆ x Error δ x δ x = x ˆ x ˆ x Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 8 / 15

Linearization using Taylor Series Expansion Given a non-linear system x = f( x, t) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 9 / 15

Linearization using Taylor Series Expansion Given a non-linear system x = f( x, t) Let s assume we have an estimate of x, i.e., ˆ x such that x = ˆ x + δ x x = ˆ x + δ x = f(ˆ x + δ x, t) (11) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 9 / 15

Linearization using Taylor Series Expansion Given a non-linear system x = f( x, t) Let s assume we have an estimate of x, i.e., ˆ x such that x = ˆ x + δ x Using Taylor series expansion x = ˆ x + δ x = f(ˆ x + δ x, t) (11) f(ˆ x + δ x, t) = ˆ x + δ x = f(ˆ x, t) + ˆ x + f( x, t) x f( x, t) x δ x x= ˆ x x= ˆ x δ x + H.O.T Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 9 / 15

Linearization using Taylor Series Expansion Given a non-linear system x = f( x, t) Let s assume we have an estimate of x, i.e., ˆ x such that x = ˆ x + δ x x = ˆ x + δ x = f(ˆ x + δ x, t) (11) Using Taylor series expansion f(ˆ x + δ x, t) = ˆ x + δ x f( x, t) = f(ˆ x, t) + x = ˆ x f( x, t) + δ x x x= ˆ x x= ˆ x δ x + H.O.T Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 9 / 15

Linearization using Taylor Series Expansion Given a non-linear system x = f( x, t) Let s assume we have an estimate of x, i.e., ˆ x such that x = ˆ x + δ x Using Taylor series expansion x = ˆ x + δ x = f(ˆ x + δ x, t) (11) f(ˆ x + δ x, t) = ˆ x + δ x = f(ˆ x, t) + ˆ x + δ x f( x, t) x f( x, t) x f( x, t) x δ x x= ˆ x x= ˆ x x= ˆ x δ x + H.O.T δ x (12) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 9 / 15

Actual Measurements Initially the accelerometer and gyroscope measurements, f i and ω i, respectively, will e modeled as f i = f i + f i (13) ω i = ω i + ω i (14) where f i and ω i are the specific force and angular rates, respectively; and f i and ω i represents the errors. In later lectures we will discuss more detailed description of these errors. Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 10 / 15

Actual Measurements Initially the accelerometer and gyroscope measurements, f i and ω i, respectively, will e modeled as f i = f i + f i (13) these terms may ω i = ω i + ω e expanded further i (14) where f i and ω i are the specific force and angular rates, respectively; and f i and ω i represents the errors. In later lectures we will discuss more detailed description of these errors. Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 10 / 15

Error Modeling Example Accelerometers f i = a +(I + M a ) f i + nla + w a (15) Gyroscopes ω i = g +(I + M g ) ω i + G g f i + w g (16) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 11 / 15

Error Modeling Example Accelerometers f i = a +(I + M a ) f i + nla + w a (15) Biases Gyroscopes ω i = g +(I + M g ) ω i + G g f i + w g (16) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 11 / 15

Error Modeling Example Accelerometers f i = a +(I + M a ) f i + nla + w a (15) Misalignment and SF Errors Gyroscopes ω i = g +(I + M g ) ω i + G g f i + w g (16) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 11 / 15

Error Modeling Example Accelerometers f i = a +(I + M a ) f i + nla + w a (15) Non-linearity Gyroscopes ω i = g +(I + M g ) ω i + G g f i + w g (16) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 11 / 15

Error Modeling Example Accelerometers f i = a +(I + M a ) f i + nla + w a (15) Gyroscopes G-Sensitivity ω i = g +(I + M g ) ω i + G g f i + w g (16) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 11 / 15

Error Modeling Example Accelerometers f i = a +(I + M a ) f i + nla + w a (15) Noise Gyroscopes ω i = g +(I + M g ) ω i + G g f i + w g (16) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 11 / 15

Pos, Vel, Force and Angular Rate Errors Position error Velocity error δ r γ β = r γ β ˆ r γ β (17) δ v γ β = v γ β ˆ v γ β (18) Specific force errors Angular rate errors δ f i = f i ˆ f i (19) e f i = f i ˆ f i = δ f i (20) δ ω i = ω i ˆ ω i (21) e ω i = ω i ˆ ω i = δ ω i (22) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 12 / 15

Attitude Error Definition Define δc γ = C γ Ĉ γ = e [δ ψ γ γ ] I +[δ ψ γ γ ] (23) This is the error in attitude resulting from errors in estimating the angular rates. Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 13 / 15

Attitude Error Properties The attitude error is a multiplicative small angle transformation from the actual frame to the computed frame Ĉ γ = (I [δ ψ γ γ ])C γ (24) Similarly, C γ = (I +[δ ψ γ γ ])Ĉ γ (25) Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 14 / 15

Specific Force and Agnular Rates Similarly we can attempt to estimate the specific force and angular rate y applying correction ased on our estimate of the error. ˆ f i = f i ˆ f i (26) ˆ ω i = ω i ˆ ω i (27) where ˆ f i and ˆ ω i are the accelerometer and gyroscope estimated caliration values, respectively. Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 13, 2014 15 / 15