On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Similar documents
Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

2011/12/25

Consideration for Future Orbit Plan of IKAROS

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

SOLAR-C Plan A SEP オプションの軌道設計問題に対して, 多目的設計探査を行った. その結果, 終端質量最大化, 終端速度最大化, 最小動径半径の最大化の間のトレードオフ関係などの軌道設計上有益な知見が得られた. また, 軌道 機体同時設計の可能性が示された.

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Controllability & Observability

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

The unification of gravity and electromagnetism.

Estimation of Gravel Size Distribution using Contact Time

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

シリコンベース新材料を用いた薄膜結晶太陽電池を目指して

Parameter Estimation of Solar Radiation Pressure Torque of IKAROS

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Study of General Dynamic Modeling Using the Craig-Bampton Method

Development of Advanced Simulation Methods for Solid Earth Simulations

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

fast large-scale trajectory design studies under uncertainties without loss of accuracy.

Illustrating SUSY breaking effects on various inflation models

Flight Results on GNC in Final Descent Phase for Hayabusa Touchdown

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Taking an advantage of innovations in science and technology to develop MHEWS

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

Thermal Safety Software (TSS) series

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

モータ用モデル予測電流制御における 予測用モータモデルの磁気特性表現の改善

Reaction mechanism of fusion-fission process in superheavy mass region

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

京都 ATLAS meeting 田代. Friday, June 28, 13

galaxy science with GLAO

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

Modeling Numerical analysis

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

GRASS 入門 Introduction to GRASS GIS

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Interface Modification and Interfacial Charge Dynamics in Quantum Dot Solar Cells and Perovskite Solar Cells

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Multi-Scale Simulations for Adaptation to Global Warming and Mitigation of Urban Heat Islands

Analysis of shale gas production performance by SGPE

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

UTokyo OCW. Copyright 2015, The University of Tokyo / UTokyo OCW The Global Focus on Knowledge Lecture Series Copyright 2015, Taro Toyoizumi

単層カーボンナノチューブ Single-Walled Carbon Nanotubes 1. 幾何学と電子構造 Geometry and Electronic Structure. Contents

SML-811x/812x/813x Series

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

高エネルギーニュートリノ : 理論的な理解 の現状

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Method for making high-quality thin sections of native sulfur

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

October 7, Shinichiro Mori, Associate Professor

Is the 2006 Yogyakarta Earthquake Related to the Triggering of the Sidoarjo, Indonesia Mud Volcano?

マスタタイトルの書式設定. Beyond ALMA. ALMA: 何がわかったか 何が足りないか LST: 何をやりたいか どのような計画か ALMA へのボーナス効果 最後に :small developments が未来を切り開く. Ryohei Kawabe (NAOJ)

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo


Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

THE HOLISTIC LOVE REPORT

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

スペース赤外線天文学の 現状と将来 ~ 波長の壁を越えて ~ 中川貴雄 (ISAS/JAXA)

Effect of periodic control frequency on wake vortices around 2D hump

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

External Review Report for Earthquake Research Institute The University of Tokyo 外部評価報告書. September 2014 平成 26 年 9 月 東京大学地震研究所

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

XENON SHORT ARC LAMPS キセノンショートアークランプ

to limit or enhance the species chances of survival. INTRODUCTION

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

Transcription:

The 4th Workshop on JAXA: Astrodynamics and Flight Mechanics, Sagamihara, July 015. On Attitude Control of Microsatellite Using Shape Variable Elements By Kyosuke Tawara 1) and Saburo Matunaga ) 1) Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, Tokyo, Japan ) The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan We propose a shape variable attitude control system to improve the attitude control performance of micro-satellites. Driving deployable solar array paddles by motor is regarded as a variable shape system in the paper. Then micro-satellite attitude can be controlled with the variation of motor angle and its inertial mass characteristics. Due to small mass of micro-satellites, the variation can results in large-angle attitude maneuvering. In this paper, the results of the investigation with a concrete mission scenario for microsatellite is reported. 形状可変機能を用いた超小型衛星の姿勢制御について 超小型衛星の姿勢制御性能向上を目的とした形状可変システムを提案する. 具体的には, 展開式の太陽電池パドルをモータ駆動することにより, システムの形状を可変とし, その慣性質量特性の変化を利用して姿勢制御を行う. 超小型衛星は質量が小さいため, この方式によって大アングルマヌーバを行うことができる可能性がある. 本稿においては, 具体的なミッション例に関して有効性を検討した結果について報告する. Key Words: Attitude Control, Microsatellite, Variable Shape Function, Large-Angle Maneuvering Nomenclature 1 Introduction ω i : ω i/j : angular velocity vector of body i relative to an inertial frame angular velocity vector of body i relative to body j J i : inertia dyadic about body i s mass center m i : mass of body i p ci : p c : position vector from inertial origin to body i s mass center position vector from inertial origin to mass center of a multibody satellite system Ω : rotational speed of a motor λ i : maneuver angle of body i b j : ρ p ρ r x unit base vector of the frame fixed to body 0 (B frame) liner density of a solar array paddle liner density of a rod components of a vector x In recent years, a frequency of launching microsatellites has increased. Furthermore, microsatellites which perform challenging mission has proposed. For example, a microsatellite TSUBAME, developed by Laboratory for Space Systems (LSS) at ISAS/JAXA and Tokyo Institute of Technology, aimed to perform advanced missions for a 50 kg class microsatellite 1). One of the missions is construction and demonstration of a high performance microsatellite bus. In the future, microsatellites with much more performances are expected to be increasingly important. In this paper, a new attitude control method for microsatellites is proposed focusing on a variable shape function. Hereinafter, a variable shape attitude control is referred to as VSAC. This study is focused to assess the usefulness of VSAC for microsatellite and this is a fundamental study towards establishment of the new attitude control method for a microsatellite. To start with, here we describe a concrete concept of VSAC. Then, we formulate attitude variation caused by VSAC and show a driving law for VSAC. Finally, we describe the conclusion.

Attitude Control Using Variable Shape Function A microsatellite which tries to perform advanced missions often drives a part of its body such as deployment of solar array paddles to supply enough stable power for mission requirement. We call such function as variable shape function. Further, appending appropriate actuators and motors to the deployment hinge parts, the satellite easily get a function for driving them. When a satellite drives an appendage, its main body attitude varies due to antitorque caused by driving the appendage (for example, solar array paddle, robot arm and so on). A method utilizing this attitude variation positively for attitude control is VSAC (variable shape attitude control). Figure 1 shows a concept of VSAC. comparative ease. Further, constraint on the microsatellite mass is frequently flexible compared to other constraint (e. g. length and volume). Therefore, we expect that microsatellites may perform agile large-angle maneuver using VSAC. In development of a large scale satellite, it will be demanded to appropriate a certain amount of budget in improvement of actuators performance before adding Variable Shape Function. However, particularly in development of a microsatellite, where compromises have frequently to be made in reliability, it is attractive that to be improved in attitude control performance by only adding a driving mechanism to a portion that originally needed to deploy. 3 Attitude Variation of Satellite Figure 1 Image of a variable shape attitude control, VSAC In this section, we formulate a relationship between angular velocity of each body and rotational speed of a motor. First, let us consider a multibody system consisted of n bodies. Satellite has a number 0 and appendages has numbers i (i=1,,, n-1). Then, total angular momentum h c about mass center of the system is written as follows and h c is conserved when external torque equals zero 4). Attitude variation due to driving an appendage is studied in some previous studies. However, the variation is treated as perturbation ) in the studies whereas VSAC proactively utilize the variation to control an attitude of a satellite. Although there are some studies investigating attitude control by robot arm motion 3), these are not employed for practical attitude control for any spacecraft. VSAC is to be effective in practical use particularly in microsatellite. Table 1 shows a relationship between mass of solar array paddles and total mass in various satellites. According to this table, the ratio of paddles mass to total mass is usually 5-10%. The larger the moment of inertia of the appendage is, the more variation of attitude with VSAC is extensive. Due to smallness of microsatellites mass, we are able to increase the percentage of mass of an appendage to mass of the microsatellite with Table 1 Relationship between paddles mass and total mass in various satellites Spacecraft Launch [year] Total mass [kg] Paddles mass [kg] Paddles mass per unit area [kg/m ] Percentage of paddles mass [%] ETS-III 198 385 37. 7.156 9.7 MOS-I 1987 750 75 7.10 10 ADEOS-II 1996 3680 189.8.636 5. INDEX 005 68.7 4.19-6.1 TSUBAME 014 48 3. 5.63 6.7 Hayabusa- 014 600 49..337 8. h c = {(p ck p c ) m k p ck + J ck ω k } (1) Further, considering the definition of mass center, following statement is valid. (p ck p k ) m k p c = 0 () By summing Eq. (1) and Eq. (), total angular momentum h c is rewritten as follows. h c = {(p ck p c ) m k (p ck p c) +J ck ω k } (3) Let us consider body 0 drives body j (j = m+1, m+,, n-1) at angular velocity ω j/0 and initial angular momentum h c, initial angular velocity of each body and external torque equal zero. Note that the norm of angular velocity ω j/0 equals to rotational speed of a motor Ω. When we assume undriven body q (q = 1,,...,m) to be fixed to satellite (body 0), each angular velocity ω q/0 satisfies following equations.

ω 0/q = 0 (4) ω q = ω 0 (5) Then, the angular velocity of the satellite is calculated by following equation. from θ 1 =90 deg to 0 deg and body is fixed to the satellite. Constants used in the calculation is set as shown in Table. Table Values of the constants 0 = (p ck p c ) m k (p ck p c) m + J ck ω 0 + J ck (ω 0 + ω k/0 ) k=m+1 (6) Constants d ζ ρ r m 0 Value 0.4 m 0.4 m 0.67 kg/m 50 kg In the next place, we construct a two dimensional satellite model to reduce argument as shown in Figure. Adding to Table, we set the initial conditions of the simulation as shown in Table 3. Table 3 Vaues of the initial conditions I. C. Value θ 1 90 deg 90 deg θ Figure A Two-dimensional model of the satellite Note that degrees of freedom between the rod and the solar array paddle are ignored in this model. Assumed each body doesn t have possibility of outplane-motion, we can define a maneuver angle λ i as integration of each body s angular velocity shown in following. Because 30 deg attitude maneuvering is a typical large angle maneuvering, the parameters should be chosen such that attitude control using VSAC has sufficient capacity to conduct large angle the microsatellite mass is frequently flexible in development of a microsatellite. Further, it is difficult to deploy large rods during orbit. Then, we chose the parameters as following. t λ i = ω i dt 0 (7) Note that ω i is the third component of the frame fixed to body 0 (B frame). Using Eq. (7), we estimate the attitude variation of each body. 4 Attitude Maneuver Using VSAC In this section, two kinds of numerical examples are conducted and the results are shown. First, we assess the magnitude of λ 0 under various parameter combinations and study desirable parameter maximize λ 0 under the design constraint. Second, we conduct attitude control simulation with a concrete mission scenario. 4.1 Magnitude of Attitude Variation Parameters in the model as shown in Figure are the rod length ξ and the density of the paddle ρ p. Here, we swept the parameters and calculate λ 0 in various condition. Note that only body 1 is driven Figure 3 conditions Attitude variation plot under various 3

4. Attitude Control Simulation Missions which require large angle maneuver include an observation of Gamma-ray burst (GRB). GRB observation sequence is shown in Figure 4. Figure 4 Mission sequence of GRB observation Here we conducted 30 deg rest to rest attitude control simulations assuming a mission of a satellite was GRB observation. Each parameter of the simulation is set as Table and Table 3. Additionally, the density of paddles ρ p and rod length ξ are chosen as 1.5 kg/m and 0.6 m. Control input is ω 0. The angular momentum of multibody system becomes h c = {R k m k R k + J ck ω k } (8) where R k = p ck p c. To determine the control input, the angular momentum is expressed in B frame as h c = {m k R kr k + J k ω k } (9) where the bolds are component of the vectors. Operator tilde is defined below as 0 x 3 x X = [ x 3 0 x 1 ] (10) x x 1 0 Because R k = f k (θ 1, θ ), R k is obtained as R k = D θ f k θ (11) where D θ f k is the Jacobian matrix of f k respect to θ and θ = [θ 1 θ ] T. The angular velocity ω i/0 is expressed as 0 ω i/0 = C [ 0 ] = Ω i/0 θ (1) θ i Considering eq. (11) and eq. (1), eq. (9) becomes as Iω 0 m i R ir iω 0 i=0 = ( m i R id θ f i + J i Ω i/0 ) θ i=0 i=1 (13) = Pθ where the angular momentum h c is assumed to be zero and I = J i. If we command angular velocity vector, the rotational speed of the hinge θ computed by the pseudoinverse of P become θ = P + (I i=0 m i R ir i)ω 0 (14) where P + = P T (PP T ) 1. Control input ω 0 is chosen as 8 deg/s. The result of the simulation is shown in Figure 5. First, Figure 5 shows angular velocity of satellite and rotational speed of the motors. As can be seen in Figure 5, 30deg rest to rest maneuver is successfully completed within 4s using VSAC. Further, attitude of satellite was settled when stopped driving paddles. As can be seen from eq. (14), the angular velocity of satellites is directly controlled in VSAC. Then, there are no overshoot of λ 0 ideally. This fact can be merit from the viewpoint of attitude control. Second, Figure 5 shows attitude variation of each body. Seen in Figure 5, each final attitude variation of the paddles λ 1, λ is 1deg. Considering this result, the light receiving face of paddles after maneuvering is 10% larger using VSAC than not using (See Figure 6). Attitude variation of paddles with respect to inertial direction becomes smaller because it is sufficient that only a part of system is to be reoriented to desired direction with VSAC whereas all parts of system should be maneuvered with conventional maneuver control methods, such as one using reaction wheels. Figure 5 Time histories of satellite angular velocity and attitude variation Figure 6 Posture relationship between sunlight and solar array paddles

For microsatellites, which are always in short power supply due to stuffing many components in small volume, it is very attractive benefit that the area of the light receiving face is not reduced too much after maneuvering. 5. Conclusion We proposed VSAC as a novel attitude control method for microsatellites. In order to show that the method is effective, we conducted two kinds of calculation. First, we showed that microsatellites can achieve large angle maneuvering by VSAC in realistic range of the simulation parameters. Then, we found that VSAC has two advantages at least by conducting the simulation of GRB observation. One arises from the characteristic control method. Control input to a satellite is rotational speed of motor in attitude control using VSAC whereas that is torque in attitude control using reaction wheels. This is to be equivalent to being able to control angular velocity of the satellite directly. The other merit is that there are some condition that we maneuver a satellite into one direction without the loss of power supply. We showed these merits in this paper. In addition to them, it is expected that performance of attitude stability improves with increasing mass of paddles. Showing this merit is a future issue. References 1) M. Matsushita et al., Flight Model Development of the Micro-satellite TSUBAME, 10 th IAA Symposium on Small Satellites for Earth Observation, Berlin, April 015. ) M. Oda, Y. Ohkami, Coordinated Control of Spacecraft Attitude and Space Manipulators, Control Engineering Practice, Vol. 5, Issue 1, 1997, pp. 11-1. 3) K. Yamada, Attitude Control of Space Robot by Arm Motion, Journal of Guidance, Control, and Dynamics, Vol. 17, No. 5, 1994, pp. 1050-1054. 4) Attitude Control Research Committee, Handbook of Satellite s Dynamics and Control, Baifukan, 007. 5