ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

Similar documents
Proton Stability and Superstring Z

arxiv:hep-ph/ v2 28 Oct 2007

Heterotic Brane World

Spectral flow as a map between (2,0) models

Grand Unification and Strings:

Spectral flow as a map between (2,0) models

arxiv:hep-ph/ v3 8 Apr 2002

RECENT DEVELOPMENTS IN FERMIONIZATION AND SUPERSTRING MODEL BUILDING

E 6 Spectra at the TeV Scale

Geography on Heterotic Orbifolds

Heterotic Supersymmetry

Crosschecks for Unification

The Standard Model and beyond

arxiv:hep-ph/ v2 5 Jan 2004

N = 2 heterotic string compactifications on orbifolds of K3 T 2

Toward the M(F ) Theory Embedding of Realistic Free-Fermion Models

Lecture 8: 1-loop closed string vacuum amplitude

The discrete beauty of local GUTs

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

A Classification of 3-Family Grand Unification in String Theory I. The SO(10) and E 6 Models. Abstract

String Theory Compactifications with Background Fluxes

U(1) Gauge Extensions of the Standard Model

Fuzzy extra dimensions and particle physics models

Gauge Threshold Corrections for Local String Models

SU(3)-Flavons and Pati-Salam-GUTs

The Physics of Heavy Z-prime Gauge Bosons

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Neutrino Mass in Strings

Neutrino masses respecting string constraints

Neutrino Models with Flavor Symmetry

arxiv:hep-ph/ v2 11 Dec 2001

Strings and Particle Physics

arxiv: v1 [hep-th] 6 Mar 2014

Coupling Selection Rules in Heterotic Orbifold Compactifications

Lecture 18 - Beyond the Standard Model

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Gauge-Higgs Unification on Flat Space Revised

String Phenomenology

Split Supersymmetry A Model Building Approach

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models

Beyond the SM, Supersymmetry

Supersymmetry Breaking

THE QUEST FOR UNIFICATION

Combining Pati-Salam and Flavour Symmetries

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Pati-Salam GUT-Flavour Models with Three Higgs Generations

arxiv: v2 [hep-th] 29 Jan 2011

Introduction to Supersymmetry

New Phenomena in 2d String Theory

On the Phenomenology of Four Dimensional Gepner Models

Theoretical Physics at the University of Liverpool

Neutrinos: status, models, string theory expectations

John Ellis, Alon E. Faraggi2, and D.V. Nanopoulos3

Flavour and Higgs in Pati-Salam Models

Strings, Exceptional Groups and Grand Unification

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003

Heterotic Torsional Backgrounds, from Supergravity to CFT

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Towards particle physics models from fuzzy extra dimensions

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

SUSY Phenomenology & Experimental searches

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Research Article Initial Systematic Investigations of the Landscape of Low-Layer NAHE Variation Extensions

Little Higgs Models Theory & Phenomenology

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Towards Realistic Models! in String Theory! with D-branes. Noriaki Kitazawa! Tokyo Metropolitan University

Electroweak and Higgs Physics

Probing the Planck scale with Proton Decay. Hitoshi Murayama (Berkeley) ICRR Mozumi July 27, 2004

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Supersymmetric Standard Models in String Theory

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Split SUSY and the LHC

Flavor structure in string theory

Massive Neutrinos and (Heterotic) String Theory

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT

December 10, :42 World Scientific Review Volume - 9in x 6in zpr 09. Chapter 1

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Sterile Neutrinos from the Top Down

Properties of the Higgs Boson, and its interpretation in Supersymmetry

New Physics from the String Vacuum

Supersymmetric Grand Unification

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Family symmetries and the origin of fermion masses and mixings

Neutrinos and Fundamental Symmetries: L, CP, and CP T

String Phenomenology. Tatsuo Kobayashi

The correspondence between free fermionic models and orbifolds

SUPERSYMMETRIC STANDARD MODELS ON D-BRANES

Models of Neutrino Masses

Baryon and Lepton Number Violation at the TeV Scale

The Higgs Mechanism and the Higgs Particle

Triplet Higgs Scenarios

(Extra)Ordinary Gauge Mediation

125 GeV Higgs Boson and Gauge Higgs Unification

Transcription:

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS Alon E. Faraggi AEF, 990 s (top quark mass, CKM, MSSM w Cleaver and Nanopoulos) AEF, C. Kounnas, J. Rizos, 003-009 AEF, PLB00, work in progress with Angelantonj, Tsulaia Galileo Galilei Institute, Firenze, 6 May 009

DATA STANDARD MODEL SU(3) x SU() x U() Y SU(5) SO(0) [ ν e + D L c [ + [ c U + L u d + E c L [ + N c L + 5 0 6 STANDARD MODEL -> UNIFICATION ADDITIONAL EVIDENCE: Logarithmic running, proton longevity, neutrino masses PRIMARY GUIDES: 3 generations SO(0) embedding

Realistic free fermionic models Phenomenology of the Standard Model and string unification Top quark mass 75 80GeV PLB 74 (99) 47 Generation mass hierarchy NPB 407 (993) 57 CKM mixing Stringy seesaw mechanism Gauge coupling unification NPB 46 (994) 63 (with Halyo) PLB 307 (993) 3 (with Halyo) NPB 457 (993) 409 (with Dienes) Proton stability NPB 48 (994) Squark degeneracy NPB 56 (998) (with Pati) Minimal Superstring Standard Model PLB 455 (999) 35 (with Cleaver & Nanopoulos) Moduli fixing NPB 78 (005) 83

Free Fermionic Construction Left-Movers: ψ µ,, χ i, y i, ω i (i =,, 6) Right-Movers ȳ i, ω i i =,, 6 φ A=,,44 = η i i =,, 3 ψ,,5 φ,,8 f e iπα(f) f V V Z = all spin c ( α ) ( α β ) β Z structures Models Basis vectors + one loop phases

Model building Construction of the physical states b j j =,,N Ξ = j n jb j For α = ( α L ; α R ) Ξ H α α(f) = ± ; α(f) f,f, ν f,f = α(f) M L = + α L α L 8 + N L = + α R α R 8 + N R = M R ( 0) GSO projections e iπ( b i F α ) s α = δ α c ( α bi ) s α Q(f) = α(f)+f (f) U() charges

Calculation of Mass Terms nonvanishing correlators V f V f V b 3 V b N gauge & string invariant anomalous U() A TrQ A 0 D A =0=A + Q A k φ k D j =0= W = W N η i =0 N =3 Supersymmetric vacuum F = D =0. Q j k φ k nonrenormalizable terms effective renormalizable operators V f V f V b 3 V b N V f V f V 3 b V b 4 V b N M N 3

The NAHE set: = {ψ µ,χ,...,6,y,...,6,ω,...,6 ȳ,...,6, ω,...,6, η,,3, ψ,...,5, φ,...,8 } S = {ψ µ,χ,...,6 }, N =4Vacua b = {χ 34,χ 56,y 34,y 56 ȳ 34, ȳ 56, η, ψ,...,5 }, N =4 N = b = {χ,χ 56,y,ω 56 ȳ, ω 56, η, ψ,...,5 }, N = N = b 3 = {χ,χ 34,ω,ω 34 ω, ω 34, η 3, ψ,...,5 }, N = N = Z Z orbifold compactification = Gauge group SO(0) SO(6),,3 E 8

beyond the NAHE set Add {α, β, γ} ψ µ χ χ 34 χ 56 y 3 y 6 y 4 ȳ 4 y 5 ȳ 5 ȳ 3 ȳ 6 y ω 5 y ȳ ω 6 ω 6 ȳ ω 5 ω ω 4 ω ω ω 3 ω 3 ω ω 4 ψ,...,5 η η η 3 φ,...,8 α 0 0 0 0 0 0 0 0 0 0 00 0 0 000 β 0 0 0 0 0 0 0 0 0 0 00 0 0 000 γ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 number of generations is reduced to three SO(0) SU(3) SU() U() T3R U() B L U() Y = (B L) + T 3 R SO(0)! SO(6),,3 U(),,3 U(),,3

The massless spectrum Three twisted generations b, b, b 3 h,0,0 h,0,0 Untwisted Higgs doublets h 0,,0 h0,,0 h 30,0, h30,0, Sector b + b + α + β h αβ,,0,0,0,0 hαβ,,0,0,0,0 SO(0) singlets Sectors b j +γ j =,, 3 hidden matter multiplets standard SO(0) representations NAHE + { α, β, γ} exotic vector like matter superheavy Quasi-realistic phenomenology

Fermion mass hierarchy Fermion mass terms ( φ cgf i f j h M ) N 3 c - calculable coefficients g - gauge coupling f i, f j b j j =,, 3 h light Higgs multiplets M 0 8 GeV φ generalized VEVs, several sources

Top quark mass prediction only λ t = t c Q t h = g 0 at N =3 W 4 b c ( Q b h αβ ) Φ + τ c L ( τ h αβ Φ ) = λ b = λ τ = c b φ M λ b = λ τ = 0.35g 3 8 λ t Evolve λ t, λ b to low energies c τ φ M m t = λ t v = λ t v 0 sin β m b = λ b v = λ b v 0 cos β where v 0 = m W g (M Z ) = 46GeV and (v + v )=v 0 m t = λ t (m t ) v 0 tan β ( + tan β) = m t 75GeV PLB74(99)47

Cabibbo mixing PLB 307 (993) 305 Find anomaly free solution V ɛ V3 Φ αβ M 3 0 V M d V 3 Φ αβ ξ Φ ξ M 4 M 0 Φ 0 0 v, ξ M V V3 Φ αβ 5 g 6 M 3 = 64 π 3 3 0 4. ɛ<0 8.Fix ξ, ξ, Φ to fit m b, m s 0.98 0. 0 V 0. 0.98 0 0 0 Three generation mixing NPB 46 (994) 63 J 0 6

Correspondence with Z Z orbifold PLB 36 (994) 6 NAHE (ξ = { ψ,,5, η, η, η 3 } =) {,S,ξ,ξ, b,b } Gauge group: SO(4) 3 E 6 U() E 8 and 4 generations. toroidal compactification (6 L +6 R ) g ij, b ij 0 0 0 0 0 0 0 0 0 0 g ij = b 0 0 ij = 0 0 0 0 0 0 0 0 g ij i j 0 i=j g ij i j R i the free fermionic point G.G. SO() E 8 E 8 mod out by a Z Z with standard embedding SO(4) 3 E 6 U() E 8 with 4 generations Exact correspondence

In the realistic free fermionic models replace X = { ψ,,5, η, η, η 3 } = with γ = { ψ,,5, η, η, η 3, φ,,4 } = Then {, S, ξ = + b + b + b 3, γ} N=4 SUSY and SO() SO(6) SO(6) apply b b Z Z N= SUSY and SO(4) 3 SO(0) U() 3 SO(6) b, b, b 3 (3 8) 6 of SO(0) O b +γ, b +γ, b 3 +γ Alternatively, c ( ξ ξ ) (3 8) 6 of SO(6) H = +

Z X Z orbifolds A torus One complex parameter Z = Z + n e + m e T x T x T Three complex coordinates z, z and z 3 Z orbifold : Z = Z + Σ i m i e i 4 fixed points Z = { 0, / e, / e, / ( e + e ) } T x T x T Z X Z α : ( β : ( αβ : ( z, z, z3 ) > ( z, z, +z3 ) > 6 z, z, z3 ) > ( + z, z, z3 ) > 6 z, z, z3 ) > ( z, +z, z3 ) > 6 48 γ : ( z, z, z3 ) > (z+/, z+/,z3+/) 4

Classification of fermionic Z Z orbifolds (FKNR, FKR) Basis vectors: consistent modular blocks 4,8 periodic fermions = {ψ µ,χ,...,6,y,...,6,ω,...,6 ȳ,...,6, ω,...,6, η,,3, ψ,...,5, φ,...,8 } S = {ψ µ,χ,...,6 }, z = { φ,...,4 }, z = { φ 5,...,8 }, e i = {y i,ω i ȳ i, ω i },i=,...,6, N =4Vacua b = {χ 34,χ 56,y 34,y 56 ȳ 34, ȳ 56, η, ψ,...,5 }, N =4 N = b = {χ,χ 56,y,y 56 ȳ, ȳ 56, η, ψ,...,5 }, N = N = Vector bosons: NS, z,, z + z, x =+s + e i + z + z impose: Gauge group SO(0) U() 3 hidden

Independent phases c [ vi v j ] = exp[iπ(vi v j )]: upper block S e e e 3 e 4 e 5 e 6 z z b b ± ± ± ± ± ± ± ± ± ± S e ± ± ± ± ± ± ± ± ± e ± ± ± ± ± ± ± ± e 3 ± ± ± ± ± ± ± e 4 ± ± ± ± ± ± e 5 ± ± ± ± ± e 6 ± ± ± ± z ± ± ± z ± ± b ± b Apriori 55 independent coefficients 55 distinct vacua Impose: Gauge group SO(0) U() 3 SO(8) 40 independent coefficients

RESULTS: FKR I: Random sampling of phases. SO(0) U() 3 hidden FKR II: Complete classification. SO(0) U() 3 SO(8) RESULTS ARE SIMILAR

7 0 9 models 5% with 3 gen FKRI

Spinor vector duality: Invariance under exchange of #(6 + 6) < > #(0) 4 0 8 6 4 0 8 6 4 0 0 4 6 8 0 4 6 8 0 4 0 4 6 8 0 4 6 8 0 4 4 0 8 6 4 0 8 6 4 0 Symmetric under exchange of rows and columns Self-dual: #(6 + 6) = #(0) without E 6 symmetry

Future: Understand in geometrical terms: Progress: Tristan Catelin-Jullien, AEF, C. Kounnas, J. Rizos, NPB009 Operational understanding in terms of partition function free phases

NAHE-based partition functions: Question: T 6 Z Z 48 fixed points SO() Z Z 4 fixed points Z shift :48 4 Is this the same vacuum? In general, no. shift that reproduces the SO() lattice at the free fermionic point?

Possible shifts: A : X L,R X L,R + πr, ) A : X L,R X L,R + (πr ± πα R A 3 : X L,R X L,R ± πα R. Using the level-one SO(n) characters ( O n = ϑ n ) 3 η n + ϑn 4 η n S n = ( ϑ n η n + i nϑn η n (, V n = ϑ n ) 3 η n ϑn 4 η n, ) (, C n = ϑ n η n i nϑn η n, ).

The partition function of the heterotic string on SO() lattice: [ Z + =(V 8 S 8 ) O + V + S + C ] (Ō6 + S 6 )(Ō6 + S ) 6, and Z =(V 8 S 8 ) [( O + V ) (Ō6 Ō 6 + C ) 6 C6 + ( S + C ) ( S6 S6 + V ) 6 V6 + ( O V + V Ō )( S6 V6 + V ) 6 S6 + ( S C + C S )(Ō6 C6 + C )] 6 Ō 6. where ± refers to c ( ξ ξ ) = ± connected by : Z =Z + /a b, a =( ) F int L +F ξ, b =( ) F int L +F ξ.

Starting from: Z + =(V 8 S 8 ) 6 Λ m,n (Ō6 + S 6 )(Ō6 + S ) 6, m,n where as usual, for each circle, and p i L,R = m i R i ± n ir i α, Λ m,n = qα 4 p L q α 4 p R η. Add shifts : (A,A,A ), (A 3,A 3,A 3 ) (48 4 yes) (SO()? no)

Uniquely: g : (A,A, 0), h : (0,A,A ), where each A acts on a complex coordinate (48 4 yes) (SO()? yes)

A STRINGY DOUBLET-TRIPLET SPLITTING MECHANIS ψ µ χ χ 34 χ 56 y 3 y 6 y 4 ȳ 4 y 5 ȳ 5 ȳ 3 ȳ 6 y ω 5 y ȳ ω 6 ω 6 ȳ ω 5 ω ω 4 ω ω ω 3 ω 3 ω ω 4 ψ,...,5 η η η 3 φ α 0 0 0 0 0 0 0 0 0 0 00 0 0 0 β 0 0 0 0 0 0 0 0 0 0 00 0 0 00 γ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NAHE χ j ψ,,5 η j + c.c. (5 + 5) j =0 j of SO(0) α, β SO(0) SO(6) SO(4) j = α L (T j ) α R(T j ) j =0 D j, D j j = h j, h j h, h,d, D, h, h,d, D are projected out h 3, h 3 remain in the spectrum

Conclusions Phenomenological string models produce interesting lessons Spinor vector duality relevance of non standard geometries Free Fermionic Models Z Z orbifold near the self dual point Duality & Self Duality String Vacuum Selection