Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Similar documents
Coupled-Cluster Perturbative Triples for Bond Breaking

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Quantum Mechanical Simulations

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electron Correlation - Methods beyond Hartree-Fock

Statistical properties of nuclei by the shell model Monte Carlo method

Auxiliary-field quantum Monte Carlo methods in heavy nuclei

The nature of superfluidity in the cold atomic unitary Fermi gas

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

Shifted-contour auxiliary-field Monte Carlo for molecular electronic structure

Quantum Theory of Many-Particle Systems, Phys. 540

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

TDDFT as a tool in biophysics

Faddeev Random Phase Approximation (FRPA) Application to Molecules

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

arxiv: v1 [nucl-th] 18 Jan 2018

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Molecular Simulation I

Quantum Monte Carlo. QMC methods in the continuum

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Size-extensive wave functions for QMC A linear-scaling GVB approach

Introduction to Density Functional Theory

Introduction to Computational Chemistry

Diffusion Monte Carlo

Electron-Proton Correlation, Theory, and Tunneling Splittings. Sharon Hammes-Schiffer Penn State University

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Shell model Monte Carlo level density calculations in the rare-earth region

Fixed-Node quantum Monte Carlo for Chemistry

Methods for Treating Electron Correlation CHEM 430

Introduction to Hartree-Fock Molecular Orbital Theory

Wave function methods for the electronic Schrödinger equation

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Density Func,onal Theory (Chapter 6, Jensen)

Quantum Chemistry Methods

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Second quantization. Emmanuel Fromager

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Time-dependent DMRG:

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems

Pseudopotentials for hybrid density functionals and SCAN

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

The Overhauser Instability

Introduction to Path Integral Monte Carlo. Part I.

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

CE 530 Molecular Simulation

H 2 in the minimal basis

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

6. Auxiliary field continuous time quantum Monte Carlo

2.4. Quantum Mechanical description of hydrogen atom

The Hartree-Fock Method

Electron Correlation Methods

Electron Correlation

Quantum Monte Carlo methods

Resonating Valence Bond point of view in Graphene

Chemistry 3502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2003 Christopher J. Cramer. Lecture 25, November 5, 2003

Introduction to Vibrational Spectroscopy

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

2. The interaction between an electron gas and the potential field is given by

Density Functional Theory for Electrons in Materials

Ground-state properties, excitations, and response of the 2D Fermi gas

Predictive Computing for Solids and Liquids

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Quantum Monte Carlo Methods for Strongly Correlated Electron Systems

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Hartree, Hartree-Fock and post-hf methods

Quantum chemistry and vibrational spectra

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

Time-dependent linear-response variational Monte Carlo.

New Frontiers in Nuclear Structure Theory

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction:

The shape distribution of nuclear level densities in the shell model Monte Carlo method

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Bridging Scales Through Wavefunction Analysis

PH 451/551 Quantum Mechanics Capstone Winter 201x

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

Optimization of quantum Monte Carlo wave functions by energy minimization

arxiv: v1 [cond-mat.str-el] 17 Aug 2016

Exercise 1: Structure and dipole moment of a small molecule

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

Mean-Field Theory: HF and BCS

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Ψ g = N g (1s a + 1s b ) Themes. Take Home Message. Energy Decomposition. Multiple model wave fns possible. Begin describing brain-friendly MO

Transcription:

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples of applications 1

Acknowledgment Shlomit Jacoby Prof. Daniel Neuhauser Prof. Anna Krylov Prof. Jan Martin Support: Israel Science Foundation Lise Meitner Center 2

Overview New quantum chemistry method: Works in terms of basis sets A continuous range of approximations from Hartree-Fock to full CI Based on Monte Carlo, but - No fixed nodes! Discuss the formalism Discuss application issues Show few results 3

Many-Fermion ground state (2 nd quantization) Hˆ = h T ˆ + ˆT V ˆ 1 2 ρ ρ ρ Electron density (matrix) 4

Goals Ground state energy Low lying excited states properties (correlation functions) How to do that rigorously??? 5

e β Ĥ φ Boltzmann is Hot! φ = a ψ + a ψ + a ψ + 0 0 1 1 2 2 = E0ψ 0 0 ae β E 1 1 + 1ψ 2 ae β β βe ψ 0 0 ae 0 E ψ 2 2 + ae β + βh 0 βh φ He φ E φ e φ 6

Groundstate is Cool Energy (Eh) -108.41-108.43-108.45-108.47-108.49-108.51-108.53-108.55 STO-3G Full CI ˆ ˆ βh Φ He Φ E( ) ˆ β β = Hˆ = H E β β Φ e Φ d E ( β) = ( H ˆ E ( β) ) 2 < 0 dβ β 0 1 2 3 4 5 β (au) 7 gs HF Determinant Variational!

How to do it??? If electrons were non-interacting easy: h T ˆ 1 N 1 Slater Det. ( ) ( ) e β ρ φ φ = φ β φ β N New Slater Det. 8

Proof (BCH) T T βh ˆ ρ βh ˆ ρ e φφ ˆˆ ˆ 1 2 φn e c1c2 cn 0 Slater Det. T T T T T T βh ˆ ρ βh ˆ ρ βh ˆ ρ βh ˆ ρ βh ˆ ρ βh ˆ ρ = e cˆ ˆ ˆ 1e e c2e e cne 0 dˆ dˆ dˆ 1 2 N ( ) ( ) ( ) φ β φ β φ β 1 2 N Slater Det. N T T βh ρˆ βh ρˆ βh βh ˆi = ( ) ˆj φi ( β) = ( ) φ ij ij j j j= 1 e c e e c e 9

2-body = very hard ˆ T V ˆ e βρ ρ φ φ N = huge # of det. 1 10

Slicing time Divide to N slices: Use Thus: βhˆ βhˆ βhˆ βhˆ e = e e e N β = 1 2 1 ˆ T ˆ T β ρ V ρ ˆ βh βt ρˆ 2 2 e = e e + O ( β ) N β 1 T 1 T 1 T ˆ β ρˆ Vρˆ β ρˆ Vρˆ β ρˆ Vρˆ ˆ ˆ ˆ T T T βh βt ρ 2 βt ρ 2 βt ρ 2 e = e e e e e e + O( β) 1 2 Goal: Represent 2-body exponential as sum of 1-body exponentials N 11

Hubbard-Stratonovich Strategy Fourier transform of a Gaussian is a Gaussian: 1 2 1 2 aρ 2 2 a x iρx e e e dx An operator! a = V β x = σv β V σ V σ β iσ V ρ β 1ρ ρ β 1 2 2 e e e d σ 12

Problem in evaluation of integrals Consider a multidimensional integral f W 1 T σ W σ 2 (... ) e f d 1 T σ W σ N σ1 σn σ 2 N e d σ Can t do on a grid! Why? Most points are on grid boundaries 1D 2:1 2D 8:1 3D 26:1 1D 2:2 2D 12:4 3D 56:8 13

Solution: Monte Carlo sampling The integral f W 1 T σ W σ 2 (... ) e f d 1 T σ W σ N σ1 σn σ 2 N e d σ Is calculated by producing random numbers ( σ1... σ N ) that are Gaussian distributed and summing f W ( σ... σ ) 1 N f ( σ... σ ) 1 N 14

Monte Carlo scheme Φ e Hˆβ Φ = Φ U σ I ( β ) Φ W T T T N ( t iv ) ( t iv ) ( t iv ) 1 2 U σ ( β) Φ = e e e I β + σ ρˆ β + σ ρˆ β + σ ρˆ Φ W N 1 2 σ e n = 1 { } = T n β σ V σ n G. Sugiyama and S. E. Koonin, Ann. Phys. N.Y. 168, 1 (1986). 15

Exercise A 1D particle is in a potential well V(x) ˆ 1 ˆ 2 H = p + V ( x) 2 Based on the Hubbard-Stratonovich transformation derive a Monte Carlo method to calculate its GS energy Hint: 1 2 1 2 pˆ β σ β 2 ˆ ( ) 2 iσp β = ( ) e ψ x A e e ψ x dσ 1 σ 2 β 2 = A e ψ( x σ β) dσ 16

Results for H 2 1.00 Correlation energy (ev) 0.50 0.00-0.50-1.00-1.50-2.00-2.50 β =4 au β =1 au β =2 au Sylvestrelli, Baroni & Car PRL 71, 0 2000 4000 6000 1148 1993 Iterations 17

What s causing the trouble? e Hˆ β = e ( h+ ivσ ) T ˆ ρ β W { σ } = 1 i σ T V ˆ ρ β O W ( β ) σ T Vσ β 1 Noise ( β ½ ) Signal ( β) Signal/Noise β ½ 0 Baer, Head-Gordon & Neuhauser, JCP 109, 6219 (1998) 18

19 Solution: contour-shift invariance ( ) W H U e β σ β = ( ) ( ) ( ) τ α τ σ τ σ i ( ) W ia d V i d V H U e e e T T β σ τ α σ τ α α β β τ τ β τ τ = 0 0 2 1 Rom, Charutz & Neuhauser, CPL 270, 382 (1997)

τ τ τ Time slice stabilization Φ e βh Φ = Φ β τ e Φ τ τ ( ) H τ ( ) { } ( ) is τ = D W e σ τ σ τ S τ = i ln ( K iv( i )) ( ) T + σ α ρ τ β τ e ( τ τ) τ τ Φ Φ τ T σ Vα τ τ δ S τ = 0 δσ τ 20

The stabilizing shift α ( τ ) = Φ ( β τ ) ˆ ρ Φ( τ ) Φ ( β ) Φ( 0) when β, τ are very large: α( τ ) = Φ ˆ ρ Φ gs gs Need to know exact GS density! Use HF density as partial stabilizer 21 Baer, Head-Gordon & Neuhauser, JCP 109, 6219 (1998)

Successful Application to H 2 Correlation energy (ev) -0.85-0.90-0.95-1.00-1.05 β= 1au β= 2au β= 4au β= 8au E E ( SC AFMC ) corr ( cc pvqz ) corr = 099. ( 2) ev = 110. ev 1.4 au 0 2000 4000 6000 Iterations 22

Things to note No uncontrolled approximation is made (no fixed nodes etc.) The auxiliary fields are sampled from a universal distribution W ( ) ( ) = 1 β T σ τ Vσ τ σ e 2 d 0 { } τ 23

Some application issues Two codes: Plane waves/pseudopotentials based code Gaussian based code (Shlomit Jacoby): Reads RHF/UHF GAMESS output Can get data from CASSCF/GVB or spin flip methods to perform multireference calculation 24

Inversion Barrier of Water H H O H H 25

Inversion Barrier of Water Barrier Correlation Energy (ev) 0.01 0-0.01-0.02-0.03-0.04-0.05-0.06-0.07 MP5 L=12 au L=8 au 0 0.5 1 1.5 2 β (au) MP2 Tarczay et al JCP 110, 11971 (1999) Baer, CPL 324, 101 (1999) 26

Electronic force on nuclei de ( + δ ) ( ) E R R E R F = lim dr δ R 0 R δ Force variance (statistical error) is infinite: σ ( F ) ( E) 2σ = lim = δ R 0 δ R 27

Solution: correlated sampling Auxiliary fields are sampled from a universal Coulomb-Gauss distribution: W 1 β T σ ( τ ) Vσ ( τ ) σ 2 d 0 { } = e τ Straightforward correlated sampling: Accurate potential surface Geometries Vibrational frequencies 28

Force variance is finite! 0.035 St. Dev. Force (au) 0.03 0.025 0.02 0.015 0.01 0.005 dr=1e-3 au dr=1e-4 au dr=1e-5 au 0 0 0.5 1 1.5 2 β (au) 29

N 2 : Bond length R e (A) 1.11 1.1 1.09 1.08 1.07 1.06 Experiment L=8 au L=12 au 1.05 0 0.5 1 1.5 2 2.5 β (au) 30

N 2 : Harmonic frequency 2900 2800 2700 ω e (cm -1 ) 2600 2500 2400 L=12 au Experiment 2300 2200 L=8 au 2100 0 0.5 1 1.5 2 2.5 β (au) 31

N 2 Heat of Formation D(kcal/mol) 240 220 200 180 160 Experiment L=8 au L=12 au 140 120 0 0.5 1 1.5 2 2.5 β (au) 32

The N 2 Potential Curve Potential Energy (ev) 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1.8 1.9 2 2.1 2.2 2.3 2.4 R (au) Hartree Fock β = 0.7 au β = 1.3 au β = 2.5 au Gdanitz CPL 283 253 (1998) Baer, JCP 113, 473 (2000) 33

Multireference AFMC ψ gs Ĥ e β n C n Φ n J ( C) = C HC ε { C SC 1} S mm ' β Hˆ β Hˆ = Φm' e Φm H m' m = Φm' He Φm ˆ HC = SCE 34

Singlet-Triplet Splitting of CH 2 30 J (kcal/mole) 25 20 15 10 2-singlet states 1-singlet state 5 0 0.5 1 1.5 2 2.5 3 β (au) 35

Sources of Error in AFMC E(β) - E FCI (E h ) 10-1 10-2 10-3 10-4 10-5 β = 1 au β = 0.5 au β = 0.2 au β = 0.1 au β = 0.01 au H 2 ccp-vdz I=10 5 β > 0 SE β < Also: Basis-set Frozen core Rid of small eigenvalues of V ijkl 10-6 0 1 2 3 4 5 6 β (au) 36

Well-tempered AFMC E(β) - E FCI (E h ) 10-1 10-2 10-3 K = 6 K = 1 H 2 ccp-vdz I = 5x10 5 R HH = 1.2 A Using several determinants considerably improves the performance 10-4 0 1 2 3 4 5 6 7 8 β (au) 37

Simple example: excited states of H 2 Lines: FullCI #Dets: 6 o β = 0 au o β = 5 au 38

H 2 states: close up 39

Torsional Ethylene bond rapture Potential energy (E h ) -77.8-77.9-78.0-78.1 β = 0 (RHF) β = 0.1 au β = 0.5 au β = 1.0 au β = 2.0 au β = 3.0 au β = 4.5 au C 2 H 4 6-31G -78.2 0 20 40 60 80 100 120 Θ (deg) 40

Singlet-Triplet states of Ethylene Potential energy (ev) 5 4 3 2 1 1 3 B 1u 6-31G β = 4.5 Eh -1 1 1 A g 0 0 20 40 60 80 100 120 Torsional angle Θ (deg) 41

Single bond-breaking 7 HF H+F Energy above min. (ev) 6 5 4 3 2 1 0 FCI b = 0.1 au b = 1 au b = 2 au b = 3 au b = 4 au Basis set: 6-31** Full CI taken from Dutta and Sherrill, J. Chem. Phys. 118, 1610 (2003). -1 0 1 2 3 4 R (Angstrom) 42

H 2 O PES for double bond breaking E-EFCI-min (ev) 14 12 10 8 6 4 Basis set: DVZ 8 Detereminants β = 0 β = 0.5 au β = 1.5 au β = 3 au Full-CI AFMC results at various values of β, vs. Full-CI R eq =0.96Å 2 0 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 R/Req 43

Summary New electronic structure method Formally exact, but has statistical error Can give PES s, break bonds, compute excited states No fixed nodes approximation Balance mutireference and MC: method to select a multi-reference space 44