accelerator physics and ion optics summary longitudinal optics

Similar documents
accelerator physics and ion optics summary longitudinal optics

Accelerator Physics Homework #3 P470 (Problems: 1-5)

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

The A, B, C and D are determined by these 4 BCs to obtain

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Accelerator Physics Homework #7 P470 (Problems: 1-4)

Bernhard Holzer, CERN-LHC

S9: Momentum Spread Effects and Bending S9A: Formulation

USPAS Accelerator Physics 2013 Duke University

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

Emittance preserving staging optics for PWFA and LWFA

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

USPAS Accelerator Physics 2017 University of California, Davis

Transverse Dynamics II

Low Emittance Machines

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

Equations of motion in an accelerator (Lecture 7)

Low Emittance Machines

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Lattice Design and Performance for PEP-X Light Source

Bernhard Holzer, CERN-LHC

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Low Emittance Machines

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

COMBINER RING LATTICE

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Introduction to Collider Physics

arxiv: v2 [physics.acc-ph] 18 Nov 2015

Longitudinal Dynamics

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia

Accelerator Physics Final Exam pts.

TRANSVERSE BEAM DYNAMICS

Physics 610. Adv Particle Physics. April 7, 2014

Hill s equations and. transport matrices

Non-linear dynamics! in particle accelerators!

Non-linear dynamics Yannis PAPAPHILIPPOU CERN

Physics 598ACC Accelerators: Theory and Applications

Beam-Based Measurement of Dynamical Characteristics in Nuclotron

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

Wed Jan 25 Lecture Notes: Coordinate Transformations and Nonlinear Dynamics

Introduction to particle accelerators

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Introduction to Transverse Beam Dynamics

Particle Accelerators: Transverse Beam Dynamics

The optimization for the conceptual design of a 300 MeV proton synchrotron *

33 ACCELERATOR PHYSICS HT E. J. N.

S. Guiducci. Table 1 PADME beam from Linac. Energy (MeV) 550. Number of positrons per pulse Pulse length (ns)

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics

Conceptual design of an accumulator ring for the Diamond II upgrade

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1

An Introduction to Particle Accelerators. v short

On-axis injection into small dynamic aperture

High performance computing simulations. for multi-particle effects in the synchrotons

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Lattices and Emittance

accelerator physics and ion optics summary damping and cooling

A Proposal of Harmonictron

Measurement of global and local resonance terms

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Thu June 16 Lecture Notes: Lattice Exercises I

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Accelerator Physics Multipoles and Closed Orbits. G. A. Krafft Old Dominion University Jefferson Lab Lecture 13

Introductory slides: Ferrite. Ferrite

Matching of Siberian Snakes

Instabilities Part III: Transverse wake fields impact on beam dynamics

Accelerator Physics. Accelerator Development

Lattices for Light Sources

Evolution of the Muon Distribution in the g-2 Ring

Parametrization of the Driven Betatron Oscillation

09.lec Momentum Spread Effects in Bending and Focusing*

Transverse Beam Dynamics II

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap.

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

Proposta per l'uso di DAFNE come allungatore d'impulso per il fascio di positroni del Linac

Lattice Design in Particle Accelerators

Part II Effect of Insertion Devices on the Electron Beam

Effect of Insertion Devices. Effect of IDs on beam dynamics

Practical Lattice Design

Extraction from cyclotrons. P. Heikkinen

Compressor Lattice Design for SPL Beam

NOVEL METHOD FOR MULTI-TURN EXTRACTION: TRAPPING CHARGED PARTICLES IN ISLANDS OF PHASE SPACE

Bernhard Holzer, CERN-LHC

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Nonlinear dynamics. Yichao Jing

Accelerator Physics Issues of ERL Prototype

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1

Synchrotron radiation

LOW EMITTANCE STORAGE RING DESIGN. Zhenghao Gu. Department of Physics, Indiana University. March 10, 2013

Transcription:

accelerator physics and ion optics summary longitudinal optics Sytze Brandenburg sb/accphys007_5/1

coupling energy difference acceleration phase stability when accelerating on slope of sine low energy: rising slope high energy (above transition): falling slope sb/accphys007_5/

coupling energy difference acceleration phase stability when accelerating on slope of sine low energy: rising slope high energy (above transition): falling slope stable region depends on phase reference particle sb/accphys007_5/3

coupling energy difference acceleration phase stability when accelerating on slope of sine low energy: rising slope high energy (above transition): falling slope stable region depends on phase reference particle sb/accphys007_5/4

concept longitudinal optics same as transverse motion transverse: quadrupole longitudinal: buncher phase difference energy difference at time focus phase difference strongly reduced initial energy spread blurs time focus sb/accphys007_5/5

accelerator physics and ion optics distortions and resonances Sytze Brandenburg sb/accphys007_5/6

dipole error induced by dipole magnet different strength different length dipole kick ( ) quadrupole magnet BL = BL+ B L y y y positioning error x and/or y B y (x) = gx; B x (y) = -gy ( BL y ) dipole kick = g xl sb/accphys007_5/7

dipole error single error along circumference angle kick x = (B y L)/Bρ largest effect when close to F-quadrupole minimum divergence, maximum beamsize smallest effect when close to D-quadrupole maximum divergence, minimum beamsize sb/accphys007_5/8

dipole error at F-quadrupole sb/accphys007_5/9

error at D-quadrupole sb/accphys007_5/10

closed orbit distortion δ-function kick ( BL y ) q ( BL y ) x' = = Bρ requirement for closed orbit: after one turn x x = R, R matrix for full turn ' ' ' x x x p sb/accphys007_5/11

solution in space coordinates R cos π Q +α sinπq β sin πq 0 0 = γ0sinπq cosπq α0sinπq α 0, β 0 and γ 0 depend on location field error (Twiss matrix) ( 1) ( π Q ) x cosπ Q+α sinπ Q + x' β sinπ Q= 0 0 0 0 0 x γ sinπ Q + x ' cos πq α sin 1 0 0 0 0 = x' solution x' β0 x0 = tanπq x' α0 x' 0 = 1 tanπq Q integer amplitude explodes resonance sb/accphys007_5/1

solution in Floquet coordinates Floquet coordinate transformation (see also lecture 3) ( ) ( s) s x s 1 d σ η( s) ψ ( s) = β Q β σ ψ changes by π per turn 0 ( ) field perturbations along orbit given by ( ) Fs = B y Bρ ( s) equation of motion of η 3 d η Q s Q F s + η=β dψ ( ) ( ) driven harmonic oscillator sb/accphys007_5/13

δ-function perturbation equation inhomogeneous in one point homogeneous solution applies except at perturbation ( ) ( ) ( ) η s =η cosq ψ s ψ π =η cosφ K K K c phase at perturbation -Qπ decreasing φ c from zero: approaching from above Qπ increasing φ c from zero: approaching from below sb/accphys007_5/14

at perturbation dη dψ dη dψ + ( ) = η Qsinφ = ηqsin Qπ =ηqsinqπ K c 0 0 = η Qsinφ = ηqsinqπ K K c 0 relate to kick in coordinate space dx ds dψ 1 dx dη 1 dη = = β K = ds Qβ ds ds Q β dψ ( BL y ) x' dx = = = K sinq π Bρ ds βk η K = sinqπ ( BL y ) Bρ η β K K sb/accphys007_5/15

graphical representation complete turn - perturbation: φ c = πq orbit should be closed: φ c = πn η K = 0 (trivial solution, no kick) kick closes orbit φ K = π(n-q) φ = Qπ φ = Qπ dη/dψ η sb/accphys007_5/16

distorted orbit ( s) β K ( BL y ) β x( s) = β( s) η ( s) = cosq ψ s ψ π sinqπ Bρ ( ( ) K ) distortions at locations s Ki, corresponding to ψ Ki sum contributions β ( BL) Ki y x( s) = β( s) cosq ψ( s) ψki π i sinqπ Bρ ( ) sb/accphys007_5/17

Fourier analysis of perturbations equation of motion of η 3 d η Q s Q F s + η=β dψ ( ) ( ) expand β 3/ F(s) in Fourier series (periodic system) d η + η=β = dψ 3 ( ) ikψ Q s Q F ( s) Q fke k= 1 π π 3 ik 1 1 ψ 1 ikψ( s) fk = β ( s) F( s) e dψ = β ( s) F( s) e ds π πq 0 0 solution η= Re k= 1 Q Q fk k e ikψ dψ 1 = ds Q β K sb/accphys007_5/18

η= Re k= 1 Q Q fk k e ikψ amplitude very large for Q close to k resonance 10 100 5 Q = 6.4 Q / Q /(Q -k -k ) 0 10-5 -10 10 5 10 15 0 3.6 3.8 4.0 4. 4.4 k Q sb/accphys007_5/19

closed orbit bumps correction of field perturbations displacement of closed orbit for injection and extraction ( BL y ) x( s) = β s βk sin φ φ Bρ ( ) ( ) simplest case: betatron phase advance π between two bumps K sb/accphys007_5/0

more general case: three field bumps: control x at specific location four field bumps: control x and x at specific location x' δ1 δ3 δ x sb/accphys007_5/1

general transfer matrix β ( cos φ + α1sin φ) β1β sin φ x β1 x x' = 1 x' β1 ( α α ) cos φ+ ( 1+α α ) sin φ ( cos φ α sin φ) 1 1 1 1 ββ β 1 x() related to x (1) ( ) =δ ββ sin( φ φ ) x 1 1 1 x (3) related to x(): by going backward ( ) =δ ββ sin( φ φ ) x δ1 β 1 = sinφ 3 3 3 δ β 3 3 sinφ 3 1 sb/accphys007_5/

bump δ determined by change of x at x() dx dx dφ = ds d φ ds dx 1 β =δ ββ cos φ ϕ =δ φ ϕ ds 1 ( ) cos( ) 1 1 1 1 1 β β + dx β =δ cos φ ϕ ds ( ) 3 3 3 β + dx dx δ = ds + ds after some algebra δ1 β1 δ β δ β = = sinφ sinφ sinφ 3 3 3 13 1 sb/accphys007_5/3

closed orbit correction profile monitors at each quadrupole sensitivity proportional to β horizontal at F-quadrupole vertical at D-quadrupole steering magnets at each quadrupole effect proportional to β horizontal at F-quadrupole vertical at D-quadrupole use magnets n-1, n and n+1 to correct error n linear problem N equations, N unknowns matrix inversion sb/accphys007_5/4

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys007_5/5

quadrupole error matrix of nominal quadrupole magnet (thin lense) 1 0 g MQ = By( x) = gx k = kl 1 Bρ matrix of perturbed quadrupole magnet M Q+ Q 1 0 ( k+ k) L 1 matrix one turn with perturbed quadrupole 1 1 0 M= MQ+ QMQM0 = M0 kl 1 sb/accphys007_5/6

cosφ 0 +α0sinφ0 β0sinφ0 M = kl( cos 0 0sin 0) 0sin 0 kl 0sin 0 cos 0 0sin φ +α φ γ φ β φ + φ α φ0 α 0, β 0, γ 0 and φ 0 : betatron functions and phase at quadrupole Tr(M) = cos φ cosφ= cosφ klβ sinφ 0 0 0 1 cosφ= sinφ φ= klβ sinφ φ klβ0 Q = = π 4 π 0 0 0 sb/accphys007_5/7

why resonance for Q = N/ coordinates at passage of quadrupole x 0, x 0 kick (kl)x 0 after one turn for Q = N coordinates x 1 = x 0 + δx, x 1 = x 0 +(δx), kick (kl)x 1 after one turn for Q = M coordinates -x 1 = -(x 0 + δx), -x 1 = -(x 0 +(δx) ), kick - (kl)x 1 mirror symmetry kicks coherent for both Q = N and Q = M sb/accphys007_5/8

second order resonance angle kick proportional to position ( ) dx s = x s kl = klη0 β s cosφ s ds ( ) ( ) ( ) in (η, φ)-coordinates dη = klηβ 0 cosφ dφ dη dη dφ dη = =β dφ ds ds ds φ = π Q dη/dφ η sb/accphys007_5/9

second order resonance dη 1 η 0 = sin kl 0 cos sin kl 0 sin d φ= η β φ φ= η β φ φ 1 dη klβ φ= cosφ= klβcos φ= ( 1+ cosφ) η0 dφ φ klβ Q= = 1+ cosφ π 4π ( ) φ = π Q dη/dφ resonance for Q = N/ η sb/accphys007_5/30

width second order resonance dη 1 η 0 = sinφ= klη0βcos φ sinφ= klη0β sin φ d φ per turn φ= πq resonance for φ = 4πQ= πn Q = N/ φ klβ Q= = ( 1+ cosφ) π 4π klβ Q oscillates in band with width Q = 4π if Q - N/ < Q locking in resonant condition at some moment in Q-oscillation Q = N/ sb/accphys007_5/31

sextupole error second order effect angle kick proportional to x ( ) dx s db L db L x s 0 s cos s ds = dx Bρ = dx Bρ η β φ y y ( ) ( ) ( ) analysis analogous to quadrupole error in (η, φ)-coordinates dby L 0 cos 3 dη d = β η φ φ dx Bρ dη dφ dη dφ dη = =β ds ds ds sb/accphys007_5/3

third order resonance 3 dη dby L η 0 = sin 0cos sin d φ= β η φ φ φ dx Bρ 3 1 dη db y L 3 φ= cosφ= β η 0 cos φ η0 dφ dx Bρ dby 3 L = β η0 φ+ φ dx 8Bρ 3 dby ( cos3 3cos ) φ β L Q = = η0 cos3φ+ 3cosφ π 16π dx Bρ ( ) Q close to N/3 resonance second term averages out in three turns sb/accphys007_5/33

width third order resonance 3 dby β L Q= η0 cos3φ+ 3cosφ 16π dx Bρ ( ) β dby L Q moves in band Q Q < η 16π dx Bρ 3 0 0 amplitude changes given by dby L a =β a sin3 dx 8Bρ φ Q = N/3 amplitude grows quadratically no locking because Q amplitude dependent amplitude growth faster than change in Q beam losses sb/accphys007_5/34

third order resonant extraction Q= dby β L a 16π dx Bρ Q = N/3 - Q: particles will not hit resonance for a < 16πBρ Q dby βl dx stable area reduce Q with quadrupoles particles pushed into unstable area can be extracted from ring sb/accphys007_5/35

third order resonant extraction stable area particles on closed orbit Q periods per turn unstable area jump from one trajectory to another Q = p/3 step π/3 Q = p/3 step 4π/3 Q = p step π sb/accphys007_5/36

Fourier analysis Fourier expansion of perturbation around ring P ( ψ ) = k p coskψ response on single perturbation n = quadrupole; n = 3 sextupole 1 Q= βpcosnqψ π overall response π 1 Q= βp( ψ) cosnqψdψ π 0 π 1 = βpk cosnqψcoskψdψ π 0 large for nq = k driven by single harmonic of distribution sb/accphys007_5/37

resonance zoo simple resonance mq x = p; nq y = p coupling resonances drive e.g. rotated quad mq x ± nq y = p + sign: beamloss - sign exchange of amplitude sb/accphys007_5/38

chromaticity dependence tune on momentum (second order) Q = Q p/p 0 caused by momentum dependence focussing 1 db k = y k p = B ρ dx k p 0 treatment analogous to quadrupole error π π 1 1 p Q = β( s) k( s) ds= β( s) k( s) ds 4π 4π p 0 0 0 typical value Q 1.3 Q; Q 5 p/p 0 = x 10-3 ; Q 0.15 too large to escape resonances momentum dependent additional focussing needed sb/accphys007_5/39

dispersion function: radius depends on momentum magnet with radial dependent gradient = sextupole locations with large dispersionfunction h By x,y = x y Bx x,y = hxy sextupole ( ) ( ) ( ) sb/accphys007_5/40

focussing strength hd k = B ρ p p 0 0 0 0 ( ) ( ) π π 1 1 p hsds Q = β( s) k( s) ds= β( s) ds 4π 4π p Bρ separate correction for Q x and Q y two sets of sextupoles width third order resonance amplitude dependent constraints on useful acceptance sb/accphys007_5/41

next lecture damping and cooling reading material Wilson: chapter 8 Electrons Wilson: chapter 1 Cooling CERN Accelerator School 199, CERN report 94-01 Chapter 18 Synchrotron radiation Chapter 4 Cooling techniques presentations and excercises available in PDF-format on http:\\www.kvi.nl\~brandenburg sb/accphys007_5/4