CLTI System Response (4A) Young Won Lim 4/11/15

Similar documents
Background LTI Systems (4A) Young Won Lim 4/20/15

CLTI Differential Equations (3A) Young Won Lim 6/4/15

Fourier Analysis Overview (0B)

Fourier Analysis Overview (0A)

CT Correlation (2A) Young Won Lim 9/9/14

Fourier Analysis Overview (0A)

CT Rectangular Function Pairs (5B)

Signals and Spectra (1A) Young Won Lim 11/26/12

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10

Propagating Wave (1B)

Capacitor in an AC circuit

Higher Order ODE's (3A) Young Won Lim 7/8/14

General CORDIC Description (1A)

Down-Sampling (4B) Young Won Lim 11/15/12

Higher Order ODE's (3A) Young Won Lim 12/27/15

Capacitor Young Won Lim 06/22/2017

Up-Sampling (5B) Young Won Lim 11/15/12

Background Transfer Function (4A) Young Won Lim 4/20/15

Higher Order ODE's (3A) Young Won Lim 7/7/14

Digital Signal Octave Codes (0A)

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

Digital Signal Octave Codes (0A)

Introduction to ODE's (0A) Young Won Lim 3/9/15

Digital Signal Octave Codes (0A)

Group & Phase Velocities (2A)

Group Delay and Phase Delay (1A) Young Won Lim 7/19/12

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A)

Capacitor in an AC circuit

Capacitor in an AC circuit

Signal Functions (0B)

Higher Order ODE's, (3A)

Capacitor in an AC circuit

Discrete Time Rect Function(4B)

Discrete Time Rect Function(4B)

Capacitor in an AC circuit

Phasor Young Won Lim 05/19/2015

Digital Signal Octave Codes (0A)

Capacitors in an AC circuit

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

Separable Equations (1A) Young Won Lim 3/24/15

Relations (3A) Young Won Lim 3/27/18

Capacitor in an AC circuit

Capacitor and Inductor

Capacitor and Inductor

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Background ODEs (2A) Young Won Lim 3/7/15

Down-Sampling (4B) Young Won Lim 10/25/12

EECE 3620: Linear Time-Invariant Systems: Chapter 2

Second Order ODE's (2A) Young Won Lim 5/5/15

Capacitor in an AC circuit

ODE Background: Differential (1A) Young Won Lim 12/29/15

Expected Value (10D) Young Won Lim 6/12/17

Group Velocity and Phase Velocity (1A) Young Won Lim 5/26/12

Root Locus (2A) Young Won Lim 10/15/14

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12

Matrix Transformation (2A) Young Won Lim 11/10/12

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15

Formulation of Linear Constant Coefficient ODEs

Background Trigonmetry (2A) Young Won Lim 5/5/15

General Vector Space (2A) Young Won Lim 11/4/12

Audio Signal Generation. Young Won Lim 1/29/18

Differentiation Rules (2A) Young Won Lim 1/30/16

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

Utility Functions Octave Codes (0A) Young Won Lim 1/24/18

Complex Series (3A) Young Won Lim 8/17/13

Bandpass Sampling (2B) Young Won Lim 3/27/12

Matrix Transformation (2A) Young Won Lim 11/9/12

Spectra (2A) Young Won Lim 11/8/12

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13

Sequential Circuit Timing. Young Won Lim 11/6/15

Undersampling (2B) Young Won Lim 4/4/12

Lecture 6: Time-Domain Analysis of Continuous-Time Systems Dr.-Ing. Sudchai Boonto

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)]

Introduction to ODE's (0P) Young Won Lim 12/27/14

Complex Trigonometric and Hyperbolic Functions (7A)

Laplace Transform Part 1: Introduction (I&N Chap 13)

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09

LTI Systems (Continuous & Discrete) - Basics

Chapter 3 Convolution Representation

Definition of the Laplace transform. 0 x(t)e st dt

Discussion Section #2, 31 Jan 2014

Audio Signal Generation. Young Won Lim 2/2/18

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

Bayes Theorem (10B) Young Won Lim 6/3/17

FSM Examples. Young Won Lim 11/6/15

2.161 Signal Processing: Continuous and Discrete Fall 2008

EE 224 Signals and Systems I Review 1/10

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

Introduction ODEs and Linear Systems

Differential and Difference LTI systems

Chapter 1 Fundamental Concepts

The Growth of Functions (2A) Young Won Lim 4/6/18

Surface Integrals (6A)

Frequency Response (III) Lecture 26:

Complex Functions (1A) Young Won Lim 2/22/14

Control Systems. Laplace domain analysis

Audio Signal Generation. Young Won Lim 2/2/18

2 Classification of Continuous-Time Systems

Transcription:

CLTI System Response (4A)

Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

ODE's and Causal LTI Systems a N d N y(t) d t N + a N 1 d N 1 y(t) d t N + + a 1 d y(t) d t d M x(t) + a 0 y(t) = b M d t + b M M 1 d M 1 x(t ) d t M 1 d x(t) + + b 1 + b d t 0 x(t) N: the highest order of derivatives of the output y(t) (LHS) M: the highest order of derivatives of the input x(t) (RHS) N < M : (M-N) differentiator magnify high frequency components of noise (seldom used) N > M : (N-M) Integrator x (t) h(t ) y (t) CLTI System Response (4A) 3

Different Indexing Schemes a N d N y(t) d t N + a N 1 d N 1 y(t) d t N + + a 1 d y(t) d t d M x(t) + a 0 y(t) = b M d t + b M M 1 d M 1 x(t ) d t M 1 d x(t) + + b 1 + b d t 0 x(t) [ N > M ] d N y(t) d N 1 y(t ) +a d t N 1 d t N 1 d y(t) d M x(t ) + +a N 1 +a d t N y(t) = b 0 d t +b M 1 d M 1 x(t ) d t M 1 d x(t) + +b M 1 +b d t M x(t ) [ N = M ] d N y(t) d t N + a 1 d N 1 y(t) d t N 1 + + a N 1 d y(t) d t + a N y(t ) = b 0 d N x(t) d t N + b 1 d N 1 x(t) d t N 1 d x(t) + + b N 1 + b d t N x(t) [ N > M ] [ N = M ] (D N +a 1 D N 1 + +a N 1 D+a N ) y(t) = ( b 0 D M +b 1 D M 1 + +b M 1 D+b M ) x(t) (D N +a 1 D N 1 + +a N 1 D+a N ) y (t) = (b 0 D N +b 1 D N 1 + +b N 1 D+b N ) x(t ) CLTI System Response (4A) 4

ODE Solutions and System Responses d N y(t) d t N + a 1 d N 1 y(t) d t N 1 + + a N 1 d y(t) d t + a N y(t ) = b 0 d N x(t) d t N + b 1 d N 1 x(t) d t N 1 d x(t) + + b N 1 + b d t N x(t) ( D N + a 1 D N 1 + + a N 1 D+ a N ) y(t ) = (b 0 D N + b 1 D N 1 + + b N 1 D+ b N ) x(t) Q( D) y(t) = P ( D) x(t) y (t) h(t ) x (t) y (t) = f (t, x (t)) Zero Input Response Zero State Response (Convolution with h(t)) Natural Response (Homogeneous Solution) Forced Response (Particular Solution) CLTI System Response (4A) 5

System Response (a) Zero Input Response (b) Zero State Response (c) Natural Response (d) Forced Response CLTI System Response (4A) 6

ZIR & ZSR ZIR ZSR x(t) y(t ) x(t) y(t ) y (0 ) = y(0 + ) ẏ (0 ) = ẏ(0 + ) ÿ (0 ) = ÿ(0 + ) continuous, but not all zero y (0 ) ẏ (0 ) ÿ (0 ) all zero y (0 + ) ẏ (0 + ) ÿ (0 + ) not all zero CLTI System Response (4A) 7

Natural & Forced Natural Forced x(t) y h (t ) x(t) y p (t ) Total x(t) y h (t ) + y p (t ) y (0 ) = y(0 + ) ẏ (0 ) = ẏ(0 + ) ÿ (0 ) = ÿ(0 + ) CLTI System Response (4A) 8

ZIR & ZSR in terms of y h & y p ZIR ZSR x(t) y(t ) x(t) y(t ) x(t) The effect of x (t ) (t < 0) is summarized as a ZIR with initial conditions at t=0- y h (t ) + y p (t ) y zi (t) = i c i e λ i t h(t ) x(t) = ( b 0δ(t ) + i u(t ) ( y h + y p ) = u(t ) ( i d i e λ it ) x(t ) k i e λ i t + y p (t ) ) CLTI System Response (4A) 9

Types of System Responses Zero Input Response State only Natural Response Homogeneous 0 h(t ) y 0 y 0 (1) y 0 (N 1) y zi (t) d n y d t + a d n 1 y n 1 d t + + a y(t) = 0 n 1 n Zero State Response Input only Forced Response Particular x (t) h(t ) 0 0 0 y zs (t) d n y d t + a d n 1 y n 1 d t + + a n 1 n y(t ) = b 0 d n x d t n + b 1 d n 1 x d t + + b n x(t) CLTI System Response (4A) 10

Comparison of System Responses (1) Zero Input Response State only Natural Response Homogeneous 0 h(t ) y 0 y 0 (1) y 0 (N 1) y zi (t) d n y d t + a d n 1 y n 1 d t + + a n 1 n y(t) = 0 Response of a system when the input x(t) is zero (no input) Solution due to characteristic modes only Zero State Response Input only Forced Response Particular x (t) h(t ) 0 0 0 y zs (t) d n y d t + a d n 1 y n 1 d t + + a y(t ) = n 1 n b 0 d n x d t n + b 1 d n 1 x d t + + b n x(t) Response of a system when system is at rest initially Solution excluding the effect of characteristic modes CLTI System Response (4A) 11

Comparison of System Responses (2) Zero Input Response State only Natural Response Homogeneous 0 h(t ) y 0 y 0 (1) y 0 (N 1) y zi (t) d n y d t + a d n 1 y n 1 d t + + a n 1 n y(t) = 0 response to the initial conditions only all characteristic modes response Zero State Response Input only Forced Response Particular x (t) h(t ) 0 0 0 y zs (t) d n y d t + a d n 1 y n 1 d t + + a y(t) = n 1 n b 0 d n x d t n + b 1 d n 1 x d t + + b n x(t) response to the input only non-characteristic mode response CLTI System Response (4A) 12

Comparison of System Responses (3) Zero Input Response State only Natural Response Homogeneous response to the initial conditions only all characteristic modes response {y ( N 1) (0 ),, y (1) (0 ), y(0 )} y n (t ) = i K i e λ i t Zero State Response Input only Forced Response Particular response to the input only non-characteristic mode response h(t ) x(t) = ( b 0δ(t ) + i u(t ) ( y h + y p ) = u(t ) ( i d i e λ it ) x(t ) k i e λ i t + y p (t ) ) y p (t ) CLTI System Response (4A) 13

Forms of System Responses Zero Input Response State only Natural Response Homogeneous y zi (t) = i c i e λ i t {y (N 1) (0 ),, y (1) (0 ), y (0 )} y n (t ) = i K i e λ i t the coefficients K i 's are determined by the initial conditions. determines the coefficients y n (t ) + y p (t ) {y (N 1) (0 + ),, y (1) (0 + ), y(0 + )} determines the coefficients Zero State Response Input only Forced Response Particular convolution form y zs (t ) = x(t) ( i d i e λ i t + b 0 δ(t ) ) Impulse matching y p (t ) = βe ζ t or (t r + β r 1 t r 1 + + β 1 t + β 0 ) step function form y zs (t ) = u(t) ( i k i e λ i t + y p (t) ) balancing singularities y p (t ) similar to the input, with the coefficients determined by equating the similar terms y p (t) is similar to the input x(t) CLTI System Response (4A) 14

Valid Intervals CLTI System Response (4A) 15

Valid Interval of Laplace Transform f (t ) F (s) = 0 f (t)e st d t f ' (t) s F(s) f (0 ) 0 0 < t < f (0 ) CLTI System Response (4A) 16

Valid Intervals of ZIR & ZSR Laplace Transform y ' ' + 3 y ' + 2 y = x (t ) y (0 ) = k 1, y '(0 ) = k 2 0 < t < [s 2 Y (s) s y (0 ) y '(0 )]+3 [s Y (s) y(0 )]+2 Y (s)=x (s) Zero Input Response Zero State Response x (t) = 0 y (0 ) = 0, y ' (0 ) = 0 Y (s) = s+5 (s+1)(s+2) Y (s) = X (s) (s+1)(s+2) x (t) = e + t 1 = +4 (s+1) 3 1 (s+2) = + 1 3 1 (s+2) 1 2 1 (s+1) + 1 6 1 (s 1) y = 4 e t 3 e 2t y = 1 2 e t + 1 3 e 2 t + 1 6 e+t CLTI System Response (4A) 17

Valid Interval of ZIR & ZSR IVPs y ' ' + P(x) y ' + Q(x) y = f (x) y = y h + y p 0 < t < y (0 ) = y 0 y ' (0 ) = y 1 y (0 ) = y h (0 ) + y p (0 ) = y 0 + 0 = y 0 y ' (0 ) = y h '(0 ) + y p '(0 ) = y 1 + 0 = y 1 y ' ' + P(x) y ' + Q(x) y = 0 y (0 ) = y 0 y ' (0 ) = y 1 y h Nonzero Initial Conditions Zero Input Response Response due to the initial conditions y ' ' + P(x) y ' + Q(x) y = f (x) y (0 ) = 0 y ' (0 ) = 0 y h + y p Zero Initial Conditions Zero State Response Response due to the forcing function f CLTI System Response (4A) 18

Intervals of Convolution x(t) h t y(t ) Causal System h(t) Non-causal input x(t) is ok t x (v)h(t v) dv = y(t) t v 0 t h(v)x(t v) dv = y(t) t v 0 h(t) x(t) y(t ) Causal System x(t) Non-causal input h(t) is ok CLTI System Response (4A) 19

Valid Intervals of System Responses ZIR + ZSR y(t ) Natural + Forced y(t ) 0 < t < < t < General Assumption General Assumption x(t) = 0 (t < 0) h(t) = 0 (t < 0) Causal Input Causal System h(t) = 0 (t < 0) Causal System y(t ) = 0 (t < 0) Causal Output CLTI System Response (4A) 20

Causal and Everlasting Exponential Inputs ZIR + ZSR y(t ) Natural + Forced y(t ) 0 < t < < t < Suitable for causal exponential inputs Suitable for everlasting exponential inputs CLTI System Response (4A) 21

The effect of an input for t < 0 ZIR + ZSR Natural + Forced x(t) = 0 (t < 0) h(t) = 0 (t < 0) y(t ) = 0 (t < 0) y(t ) h(t) = 0 (t < 0) y(t ) y(t ) y(t ) The effect of x(t) (t < 0) is summarized as a ZIR with initial conditions at t=0- CLTI System Response (4A) 22

Interval of Validity of a System Response x(t ) y(t) t 0 h(t ) t > 0 an impulse is excluded an impulse can be present in x(t) and h(t) at t = 0 δ(t) discontinuity at t = 0 creates initial conditions x (N 1) (0 ) y (N 1) (0 ) y (N 1) (0) y (N 1) (0 + ) x (N 2) (0 ) y (N 2) (0 ) y (N 2) (0) y (N 2) (0 + ) x (1) (0 ) x (0 ) The initial conditions in the term Zero State refers this initial conditions y (1) (0 ) y (0 ) y (1) (0) y (0 ) y (1) (0 + ) y (0 + ) Usually known IC Needed IC CLTI System Response (4A) 23

Discontinuous Initial Conditions y ' ' + 3 y ' + 2 y = x(t ) y(0 ) = y(0 + ) y ' (0 ) = y ' (0 + ) continuous initial conditions (the same) y ' ' + 3 y ' + 2 y = b 1 x ' (t) + b 2 x(t) y ' ' + 3 y ' + 2 y = b 0 x ' ' (t) + b 1 x ' (t) + b 2 x(t ) y(0 ) y(0 + ) y ' (0 ) y ' (0 + ) possible discontinuity CLTI System Response (4A) 24

Zero Input Response CLTI System Response (4A) 25

Zero Input Response : y zi (t) (D N +a 1 D N 1 + +a N 1 D+a N ) y (t) = (b 0 D N +b 1 D N 1 + +b N 1 D+b N ) x(t ) 0 h(t ) y 0 y 0 (1) y 0 (N 1) y zi (t) d 2 y (t) d t 2 + a 1 d y(t) d t + a 2 y (t) = 0 x(t) = 0 x(t) = 0 Q( D) y zi (t ) = 0 (D N +a 1 D N 1 + +a N 1 D+a N ) y zi (t) = 0 linear combination of {y zi (t) and its derivatives} = 0 ce λ t only this form can be the solution of y zi (t) Q(λ) = 0 (λ N + a 1 λ N 1 + + a N 1 λ+ a N ) ce λ t = 0 = 0 0 CLTI System Response (4A) 26

Characteristic Modes (D N +a 1 D N 1 + +a N 1 D+a N ) y (t) = (b 0 D N +b 1 D N 1 + +b N 1 D+b N ) x(t ) Q(λ) = (λ N + a 1 λ N 1 + + a N 1 λ+ a N ) = 0 Q(λ) = (λ λ 1 )(λ λ 2 ) (λ λ N ) = 0 λ i characteristic roots y zi (t) = c 1 e λ t 1 + c 2 e λ t 2 + c N e λ Nt = i c i e λ i t e λ i t characteristic modes ZIR a linear combination of the characteristic modes of the system (1, a 1,, a N 1, a N ) the initial condition before t=0 is used {y ( N 1) (0 ),, y (1) (0 ), y(0 )} 0 x(t) = 0 h(t ) (b 0, b 1,, b N 1, b N ) y 0 y 0 (1) y 0 (N ) y zi (t) = i c i e λ i t {y ( N 1) (0 + ),, y (1) (0 + ), y(0 + )} any input is applied at time t=0, but in the ZIR: the initial condition does not change before and after time t=0 since no input is applied CLTI System Response (4A) 27

Zero Input Response IVP d N y(t) d N 1 y(t ) + a d t N 1 d t N 1 d y(t) + +a N 1 +a d t N y(t ) = 0 (D N +a 1 D N 1 + +a N 1 D+a N ) y (t ) = 0 y (N 1) (0 ) y (1) (0 ) y (0 ) = = = y (N 1) (0) y (1) (0) y (0) = = = y (N 1) (0 + ) y (1) (0 + ) y (0 + ) = k N 1 y (N 2) (0 ) = y (N 2) (0) = y (N 2) (0 + ) = k N 2 = k 1 = k 0 ZIR Initial Value Problem (IVP) x(t) = 0 y zi (t) Zero Input Response h(t ) input is zero only initial conditions drives the system t=0 t=0 t=0 + y zi (0 ) = y zi (0) = y zi (0 + ) y zi (0 ) = y zi (0 ) = y zi (0) = y zi (0) = y zi (0 + ) y zi (0 + ) CLTI System Response (4A) 28

Zero State Response CLTI System Response (4A) 29

Zero State Response y(t) Zero State Response + y(t ) = x (t ) h(t) = x( τ)h(t τ ) d τ Convolution Impulse response h(t ) causal system h(t): response cannot begin before the input h(t τ) = 0 t τ < 0 causal input x(t): the input starts at t=0 x( τ) = 0 τ < 0 Causality t y(t ) = 0 x(τ)h(t τ ) d τ, t 0 CLTI System Response (4A) 30

Delayed Impulse Response (D N +a 1 D N 1 + +a N 1 D+a N ) y (t) = (b 0 D N +b 1 D N 1 + +b N 1 D+b N ) x(t ) All initial conditions are zero y ( N 1) (0 ) = = y (1) (0 ) = y (0) (0 ) = 0 superposition of inputs delayed impulse (1, a 1,, a N 1, a N ) the sum of delayed impulse responses x (t) h(t ) 0 0 0 y (t) = h(t ) x(t) (b 0, b 1,, b N 1, b N ) + = x(τ)h(t τ) d τ scaling delayed impulse response CLTI System Response (4A) 31

Convolution Integral 1 Δ τ p(t ) Δ τ x (t) h(t ) (1, a 1,, a N 1, a N ) (b 0, b 1,, b N 1, b N ) 0 0 0 y (t) = h(t ) x(t) x(t) = lim x(nδ τ) p(t n Δ τ) Δ τ 0 n p(t n Δ τ) = lim x(nδ τ) Δ τ Δ τ 0 Δ τ n = lim x(nδ τ)δ(t nδ τ)δ τ Δ τ 0 n y (t) = lim Δ τ 0 n + = x(nδ τ)h(t n Δ τ)δ τ x (τ)h(t τ) d τ CLTI System Response (4A) 32

Pulse and Impulse Response 1 Δ τ p(t ) δ(t ) x (t) (b 0, b 1,, b N ) h(t ) y (t) Δ τ (1, a 1,, a N ) δ(t ) h(t ) δ(t n Δ τ) h(t n Δ τ) x (nδ τ)δ(t nδ τ)δ τ lim x (n Δ τ)δ(t nδ τ)δ τ Δ τ 0 x (n Δ τ)δ(t nδ τ)δ τ lim Δ τ 0 n x (nδ τ)h(t nδ τ)δ τ lim x (n Δ τ)h(t n Δ τ)δ τ Δ τ 0 x (n Δ τ)h(t nδ τ)δ τ lim Δ τ 0 n + x(τ)δ(t τ) d τ + x(τ)h(t τ) d τ x (t) y (t) DT Convolution (1A) 33 Young W. Lim

Zero State Response IVP d N y(t) d N 1 y(t ) +a d t N 1 d t N 1 d y(t) d M x(t ) + +a N 1 +a d t N y(t ) = b 0 d t +b M 1 d M 1 x(t ) d t M 1 d x(t) + +b N 1 +b d t N x(t ) (D N +a 1 D N 1 + +a N 1 D+a N ) y (t ) = (b 0 D M +b 1 D M 1 + +b N 1 D+b N ) x(t) all initial conditions are zero y(0 ) = y (1) (0 ) = y (2) (0 ) = y ( N 2) (0 ) = y ( N 1) (0 ) = 0 ZSR Initial Value Problem (IVP) x(t) h(t ) y(t) * = t=0 t=0 t=0 + t=0 t=0 t=0 + * an impulse in x(t) & h(t) at t = 0 creates non-zero initial conditions y(0 + ) = k 0, y (1) (0 + ) = k 1, y ( N 2) (0 + ) = k N 2, y ( N 1) (0 + ) = k N 1 CLTI System Response (4A) 34

Total Response CLTI System Response (4A) 35

Partitioning a Total Response y(t) = N c k e λ kt k =1 Zero Input Response + x(t) h(t) Zero State Response y(t) = y n (t) + y p (t ) Natural Response Forced Response Classical Approach CLTI System Response (4A) 36

Total Response and Initial Conditions ZIR [, 0 ] [ 0 +, + ] ZSR + ZIR zero input response + zero state response y(t ) = y zi (t) t 0 because the input has not started yet continuous at t = 0 y(0 ) = y zi (0 ) = y zi (0 + ) ẏ(0 ) = y zi (0 ) = y zi (0 + ) y(t ) = y zi (t) + y zs (t) y(0 + ) y (0 ) possible discontinuity at t = 0 y(0 + ) = y zi (0 + )+ y zs (0 + ) ẏ(0 + ) = y zi (0 + )+ y zs (0 + ) [ 0 +, + ] y n + y p natural response + forced response y h (0 ) y zi (0 ) ẏ h (0 ) y zi (0 ) y p (0 ) y zi (0 ) y p (0 ) y zi (0 ) y(t ) = y h (t ) + y p (t ) y(0 + ) = y zi (0 + )+ y zs (0 + ) ẏ(0 + ) = y zi (0 + )+ y zs (0 + ) y(0 + ) = y h (0 + )+ y p (0 + ) ẏ(0 + ) = y h (0 + )+ y p (0 + ) Interval of validity t > 0 CLTI System Response (4A) 37

Total Response = ZIR + ZSR y(t) = N c k e λ kt k =1 + x(t) h(t) ZIR y zi (t) ZSR y zs (t ) y(t ) = y zi (t) t 0 possible discontinuity at t = 0 because the input has not started yet in general, the total response continuous ZIR initial conditions y zi (0 ) = y zi (0 + ) y zi (0 ) = y zi (0 + ) y zs (0 ) = y zs (0 + ) y zs (0 ) = y zs (0 + ) discontinuous ZSR initial conditions x(t) y(t) h(t ) CLTI System Response (4A) 38

Total Response = ZIR + ZSR (Ex1) initial conditions y(t ) homogeneous solution y h (t ) ZIR y zi (t) characteristic mode terms only no delta function ZSR x(t) h(t) y zs (t ) * no impulse CLTI System Response (4A) 39

Total Response = ZIR + ZSR (Ex2) initial conditions y(t ) homogeneous solution y h (t ) ZIR y zi (t) with delta function ZSR x(t) h(t) y zs (t ) impulse at t=0 * CLTI System Response (4A) 40

Total Response = y h + y p y(t) = N c k e λ kt k =1 Zero Input Response + x(t) h(t) Zero State Response y p (t) has a similar form as the input x(t) x(t) ( i d i e λ i t + b 0 δ(t ) ) convolution form y p (t) is included in ZSR u(t) ( i k i e λ i t + y p (t ) ) step function form y(t) = y n (t) + y p (t ) Classical Approach Natural Response Forced Response CLTI System Response (4A) 41

Forced Response y p in ZSR x(t) h(t) x(t) ( i d i e λ i t + b 0 δ(t ) ) convolution form Zero State Response t = 0 x( τ) ( i d i e λ i (t τ) + b 0 δ(t τ) ) d τ = i t( d i e λ t i 0 τ) t x( τ)e λ τ i d + b 0 0 x( τ)δ(t τ) d τ forced response example x(t) = t t e λ i t, e λ it y p (t ) = A t+b u(t) ( i e λ i 0 k i e λ i t + y p (t ) ) i k i e λ it step function form CLTI System Response (4A) 42

System Responses y(t) = y p (t ) + y n (t) Forced Response Natural Response x(t) = δ(t) Impulse Response y p (t ) = 0 y h (t ) x(t) = k Step Response y p (t) = β y h (t ) x(t) = t u(t) Ramp Response y p (t) = β 1 t+β 0 y h (t ) x(t ) = e ζ t ζ λ i y p (t) = βe ζ t y h (t ) CLTI System Response (4A) 43

Total Response and Characteristic Modes ZIR ZSR ZIR ZSR i i c i e λ i t k i e λ i t y p (t) y p (t) y zi (t) = i c i e λ it y zs (t) = h(t) x(t ) Natural Response Forced Response h(t) = b 0 δ(t ) + i d i e λ i t y p (t ) = 0 x(t) = δ(t) y n (t ) = i K i e λ i t y p (t) y p (t) = β y p (t) = β 1 t+β 0 x(t) = k x(t) = t u(t) y p (t) = βe ζ t x(t) = e ζ t ζ λi CLTI System Response (4A) 44

Characteristic Mode Coefficients N c k e λ k t k=1 ZIR + x(t) h(t) ZSR characteristic mode terms only c i e λ i t characteristic mode terms may exist k i e λ i t ZSR includes the particular solution y p (t) y n (t) + y p (t ) Natural Response lumped all the characteristic mode terms K i e λ i t Forced Response characteristic mode terms t r e λ i t possible CLTI System Response (4A) 45

Determining Characteristic Mode Coefficients the initial condition after t=0 is used {y ( N 1) (0 + ),, y (1) (0 + ), y(0 + )} the same initial condition before t=0 {y ( N 1) (0 ),, y (1) (0 ), y(0 )} N c k e λ k t k=1 ZIR + x(t) h(t) ZSR any input is applied at time 0, but in the ZIR: the initial condition does not change before and after time 0 since no input is applied the initial condition after t=0 is used {y ( N 1) (0 + ),, y (1) (0 + ), y(0 + )} y n (t) + y p (t ) So the effects of the char. modes of ZSR are included. Natural Response Forced Response CLTI System Response (4A) 46

Finding the Necessary Initial Conditions ZIR Coefficients ZSR Coefficients y zi (t) = i c i e λ it y zs (t) = u(t ) ( i k i e λ i t + y p (t) ) initial conditions at time t = 0 initial conditions at time t = 0 + zero conditions at time t = 0 initial conditions at time t = 0 + continuous initial conditions (the same) t > 0 balancing singularities t > 0 Natural Response Coefficients y (t) = i K i e λ i t + y p (t) y zs (t) = x(t ) ( i d i e λ i t + b 0 δ(t ) ) initial conditions initial conditions at time t = 0 at time t = 0 + conversion needed balancing singularities t > 0 zero conditions at time t = 0 impulse matching initial conditions at time t = 0 + t > 0 CLTI System Response (4A) 47

Finding the Necessary Initial Conditions ZIR Coefficients ZSR Coefficients y zi (t) = i c i e λ it y zs (t) = u(t ) ( i k i e λ i t + y p (t) ) y (i) (0 + ) y (i) (0 + ) balancing singularities t > 0 Natural Response Coefficients y (t) = i K i e λ i t + y p (t) y zs (t) = x(t ) ( i d i e λ i t + b 0 δ(t ) ) y (i) (0 + ) h (i) (0 + ) balancing singularities t > 0 impulse matching t > 0 CLTI System Response (4A) 48

Finding Causal LTI System Responses Zero Input Response Natural Response Homogeneous y zp (t) = i c i e λ i t {y (N 1) (0 ),, y (1) (0 ), y (0 )} y n (t ) = i K i e λ i t {y (N 1) (0 + ),, y (1) (0 + ), y(0 + )} Zero State Response Forced Response Particular (1) y zs (t) = h(t) x(t ) h(t) = b 0 δ(t ) + i d i e λ i t y p (t ) = βe ζ t or (t r + β r 1 t r 1 + + β 1 t + β 0 ) {0,, 0, 0} {h ( N 1) (0 + ),, h (1) (0 + ), h(0 + )} {y (N 1) (0 ),, y (1) (0 ), y (0 )} (2) y zs (t ) = ( i b i e λ it + y p (t) ) u(t) y n (t ) + y p (t ) {y (N 1) (0 + ),, y (1) (0 + ), y(0 + )} {0,, 0, 0} {y (N 1) (0 + ),, y (1) (0 + ), y(0 + )} CLTI System Response (4A) 49

References [1] http://en.wikipedia.org/ [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003 [3] M. J. Roberts, Fundamentals of Signals and Systems [4] S. J. Orfanidis, Introduction to Signal Processing [5] B. P. Lathi, Signals and Systems