EE 529 Remote Sensing Techniques. Review

Similar documents
Wave Equation (2 Week)

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

H is equal to the surface current J S

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Revisiting what you have learned in Advanced Mathematical Analysis

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

CSE 245: Computer Aided Circuit Simulation and Verification

5. Response of Linear Time-Invariant Systems to Random Inputs

Introduction to Fourier Transform

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Fourier Series: main points

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Chapter 12 Introduction To The Laplace Transform

EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445

ECE 3TR4 Communication Systems (Winter 2004)

Physics 160 Lecture 3. R. Johnson April 6, 2015

Lecture 2 Qualitative explanation of x-ray sources based. on Maxwell equations

Circuits and Systems I

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Linear Time-Invariant (LTI) Systems

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

EECS20n, Solution to Midterm 2, 11/17/00

From Fourier Series towards Fourier Transform

Almost power law : Tempered power-law models (T-FADE)

Phase Noise in CMOS Differential LC Oscillators

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

1 Lecture: pp

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

2. Background Material

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Lecture 4: Laplace Transforms

Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome

Elementary Differential Equations and Boundary Value Problems

Gaussian minimum shift keying systems with additive white Gaussian noise

e 2t u(t) e 2t u(t) =?

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Control System Engineering (EE301T) Assignment: 2

ψ ( t) = c n ( t ) n

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

EXERCISE - 01 CHECK YOUR GRASP

ESE 531: Digital Signal Processing

Response of LTI Systems to Complex Exponentials

CHE302 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES. Professor Dae Ryook Yang

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

DISCRETE TIME FOURIER TRANSFORM (DTFT)

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

Poisson Arrival Process

Microscopic Flow Characteristics Time Headway - Distribution

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

6.003 Homework #13 Solutions

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Chapter 4 The Fourier Series and Fourier Transform

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

Chapter 6. Laplace Transforms

Math 266, Practice Midterm Exam 2

Double Slits in Space and Time

[ ] [ ] DFT: Discrete Fourier Transform ( ) ( ) ( ) ( ) Congruence (Integer modulo m) N-point signal

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #8 on Continuous-Time Signals & Systems

Random Walk on Circle Imagine a Markov process governing the random motion of a particle on a circular

Signal Processing Signal and System Classifications. Chapter 13

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Properties of LTI Systems

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

Chapter 4. Truncation Errors

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

The Fourier Transform (and more )

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Random Process Part 1

EE 434 Lecture 22. Bipolar Device Models

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

Lecture 21 : Graphene Bandstructure

Chapter One Fourier Series and Fourier Transform

FWM in One-dimensional Nonlinear Photonic Crystal and Theoretical Investigation of Parametric Down Conversion Efficiency (Steady State Analysis)

6.003 Homework #9 Solutions

18.03SC Unit 3 Practice Exam and Solutions

Outline Chapter 2: Signals and Systems

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Transcription:

59 Rmo Snsing Tchniqus Rviw

Oulin Annna array Annna paramrs RCS Polariaion Signals CFT DFT

Array Annna Shor Dipol l <<λ Far fild of annna r >>λ r, R[ r ω ] r H φ ηk Ilsin 4πr η µ - Prmiiviy ε - Prmabiliy kr η µ ε

Array Array Annna Annna S S r r r r Il k kr π η 4 sin 4 sin r Il k kr π η 4 sin r Il k kr π η d/ d/

Far Fild Approimaion r kr ηk Ilsin 4πr kr ηk Ilsin 4πr S d/ d/ S r r ηk Ilsin r r r d k r sin 4πr r r sin ηk Ilsin d k r+ sin 4πr r r + d d sin

Far Fild Approimaion Far Fild Approimaion sin d sin d + + sin sin d d T sin cos d T Array Facor Toal fild Fild du o a singl lmn a origin Array Facor r Il k kr π η 4 sin r Il k d r k π η 4 sin sin r Il k d r k π η 4 sin sin +

Far Fild Approimaion Far Fild Approimaion S S r d d r r 3 r N S S N...... sin sin sin + + + + + + + + N k kd kd n T AF AF N n kd n sin ψ AF sin sin ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ N N N N N N

Far Fild Approimaion r N AF N sin ψ ψ sin S N r 3 T AF S d r N ma S d S r AF n N sin ψ ψ N sin

Annna Paramrs Radiaion bamwidh Firs-Null Bamwidh Half-Powr Bamwidh Main lob Sidlobs

Annna Paramrs Powr radiaion parn G sin N sin N kd kd sin sin Nd L G 3.5 db db λ L Radians db

Annna Paramrs W L λ db Radians L λ φdb Radians W Sidlobs Main lob

Annna Paramrs Powr dnsiy: Avrag radiad powr P d PT 4πr Radiaing ransmiing powr Radiaion innsiy U D T 4 π r P P d Dirciviy: Raio of maimum powr dnsiy o avrag powr dnsiy in all dircions from an idal sourc 4πr P P T d,ma

Annna Paramrs Gain U ma G U rf 4π G φ 3dB 3dB ffciv ara and annna gain Maimum radiaion innsiy of a rfrnc annna L W λ db Radians L A LW G 4 πa λ λ φdb Radians W Sidlobs Main lob

RCS RCS: Srngh of cho in rcivd signal P σ r P di P dr Pr 4πR Incidn powr dnsiy Powr dnsiy a rcivr Rflcd powr from obc σ 4πR P P dr di RCS 4πR lim R P P dr di σ, φ ;, φ i i r r 4πR Pdr R, r, φr P, φ di i i Approima RCS Prdicion Mhods: GO, PO, GTD, PTD, MC

RCS Dc obc largr han is wavlngh, dpndn on viwing angl, frquncy and polariaion Scaring Mari S S S XX YX S S XY YY r r y S y Incidn fild Backscard fild σ σ XX YX σ σ XY YY S S XX S XY 4πR YX S YY

Polariaion Polariaion ] R[, ω + + cos cos, y y k k δ ω δ ω k $ $y, $ y, + + cos cos,, y y y k k δ ω δ ω

$y $ Linar Polariaion, $y, $ $ δ δ y δ +, y α an cos ω k + δ y y α α π / -polarid y-polarid

$y $ Circular Polariaion, $y, $ π δ δ δ y + + kπ, y y, y $ α, ± ω k + δ

llipical llipical Polariaion Polariaion $y $, δ δ sin, cos,,, + y y y y $ $y y, $ TH RAL LCTRIC FILD VCTOR MOVS IN TIM ALONG AN LLIPS Wih: y δ δ δ,

llipical Polariaion $y, oy o τ $ CIRCULAR τ : LLIPTICITY ANGL o oy LLIPTIC π τ 4 o oy

llipical Polariaion $y $y, $ τ A φ φ $ A : WAV AMPLITUD φ : ORINTATION ANGL π π φ τ : LLIPTICITY ANGL π τ 4

RCS and Polariaion HH+VV HV HH-VV

Coninuous Signals Coninuous Signal Coninuous in im Coninuous rang of ampliud valus sinπf

Coninuous Signals Dla or Impuls funcion Propris: δ for f δ d f δ d f δ d f f f τ δ τ dτ

Coninuous Signals Linar Convoluion Calculaion of oupu y of a sysm o inpu h y τ h τ dτ h h τ τ dτ Lngh of N Lngh of h N Lngh of y N +N -. 3,,, h y

Coninuous Signals Fourir Transform Givs h frquncy conns of a signal X ω ω d π π π X ω ω dω δ πδ ω

Som usful rlaions: ω ω X ω ω ω X ω ω X X ω ω π X X ω X m m ω ω ω for ohrwis m π sinω Coninuous Coninuous Signals Signals

Discr Signals Sampling Thorm s δ nt s n X s ω X ω nωs T s n To prvn aliasing, sampling frquncy mus b grar han wic h highs frquncy prsn in a signal ωs ω ma

Discr Signals Discr-im Signal.8.6 n.4. Quanid in im Quanid ampliud valus -. -.4 -.6 -.8 :/4:-/4; sin*pi**; sm,'.' - 5 5 5 3 35 4 n n sinπfns

Discr Signals Discr-im Signal.8.8.6.6.4.4.. n n -. -. -.4 -.4 -.6 -.6 -.8 -.8-5 5 5 3 35 4 n n sinπfns - 5 5 5 3 35 4 n n sinπfns + πm sinπ f + kfs ns

Discr Fourir Transform Discr Signals Priodic signal.8.6.4 9 8 7 X m N n n N ω m n N m mωs N πnm / N X m πmn / N Ampliud. -. -.4 -.6 -.8 -...3.4.5.6.7.8.9 :.:-.; ap**pi*5*; plo,rala Ampliud 6 5 4 3 3 4 5 6 7 8 9 f smabsffa,. Fas Fourir Transform - im saving compuaion chniqu of h Discr Fourir Transform

Discr Signals Linar Convoluion m y n h m n m Circular Convoluion y n N m h m n m N y n ω ω ω n X H dω π y n N N k X k H k πkn / N Lngh of n N Lngh of hn N Lngh of yn N +N - Lngh of n N Lngh of hn N Lngh of yn N Circular convoluion lads o aliasd oupu unlss N is chosn corrcly, i.. N +N - This can b carrid ou by ro padding boh n and hn

Discr Signals Linar Convoluion [ ]; [ - -]; conv, - - - Circular Convoluion iffff.*ff iffff,5.*ff,5 -... -. iffff,6.*ff,6.. -. -. iffff,7.*ff,7.... -. -. -.

Discr Signals.9.8.7.9.8.7 Ampliud Ampliud.6.5.4.3.. 3 4 5 6 7 8 9 n.4..8.6 Ampliud Ampliud.6.5.4.3.. 3 4 5 6 7 8 9 n.4..8.6 a ros,; a: ; sma,'.' b ros,; b ; smb,'.' smabsiffffa.*ffb,'.' c p-**pi*9*[:]/; smabsiffffa.*c,'.'.4.4.. 3 4 5 6 7 8 9 n 3 4 5 6 7 8 9 n