Extending Hori-Vafa. Richard S. Garavuso. University of Alberta. Collaboration: L. Katzarkov, M. Kreuzer, A. Noll

Similar documents
Elliptic Genera of non-compact CFTs

D-branes in non-abelian gauged linear sigma models

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech

Gauged Linear Sigma Model and Hemisphpere Partition Function

Supermanifolds, Rigid Manifolds and Mirror Symmetry

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

LANDAU-GINZBURG MODEL FOR A CRITICAL TOPOLOGICAL STRING

Solution Set 8 Worldsheet perspective on CY compactification

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

An introduction to mirror symmetry. Eric Sharpe Virginia Tech

A-twisted Landau-Ginzburg models

arxiv:hep-th/ v1 22 Aug 1995

An Introduction to Quantum Sheaf Cohomology

arxiv: v2 [hep-th] 26 Oct 2017

THE LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE

Kähler Potential of Moduli Space. of Calabi-Yau d-fold embedded in CP d+1

arxiv:hep-th/ v1 21 May 1996

Introduction to defects in Landau-Ginzburg models

Looking Beyond Complete Intersection Calabi-Yau Manifolds. Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R.

arxiv:hep-th/ v2 20 Nov 1992

arxiv: v1 [hep-th] 5 Apr 2012

arxiv:hep-th/ v3 9 May 2000

Mirrored K3 automorphisms and non-geometric compactifications

15.2. Supersymmetric Gauge Theories

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Toward the M(F ) Theory Embedding of Realistic Free-Fermion Models

Witten, Cardy, and Holonomy Saddles

Phases of Supersymmetric D-branes on Kähler Manifolds. and the McKay correspondence

The Landau-Ginzburg/Calabi-Yau Phase Transition

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U.

1 4-dimensional Weyl spinor

Generalized N = 1 orientifold compactifications

Aspects of SUSY Breaking

Generalized complex geometry and topological sigma-models

Witten Index for Noncompact Dynamics

Recent developments in 2d (0,2) theories

2d SCFT from M2-branes

Mirror Maps and Instanton Sums for Complete Intersections in Weighted Projective Space

Seiberg Duality in Matrix Model

AN EXAMPLE OF BERGLUND-HÜBSCH MIRROR SYMMETRY FOR A CALABI-YAU COMPLETE INTERSECTION

Generalized complex geometry and supersymmetric non-linear sigma models

Jackiw-Pi Model: A Superfield Approach

Yet Another Alternative to Compactification by Heterotic Five-branes

On the BCOV Conjecture

Overview of classical mirror symmetry

Heterotic Geometry and Fluxes

Gauged Linear Sigma Model in the Geometric Phase

Stability of Landau-Ginzburg Branes

Triality of Two-dimensional (0,2) Theories

The geometry of Landau-Ginzburg models

Qubit Systems from Colored Toric Geometry and Hypercube Graph Theory

Radiation from the non-extremal fuzzball

Contact interactions in string theory and a reformulation of QED

Geometry of the Calabi-Yau Moduli

On Flux Quantization in F-Theory

Heterotic Mirror Symmetry

Counting black hole microstates as open string flux vacua

Nonsupersymmetric C 4 /Z N singularities and closed string tachyons

Heterotic Torsional Backgrounds, from Supergravity to CFT

arxiv:hep-th/ v1 2 May 1992

Superstrings and Supergeometry

Transverse geometry. consisting of finite sums of monomials of the form

Free fermion and wall-crossing

Homological mirror symmetry

INTRODUCTION TO THE LANDAU-GINZBURG MODEL

Topological String Partition Functions as Polynomials

Wrapped M5-branes leading to five dimensional 2-branes

Liouville Theory and the S 1 /Z 2 orbifold

arxiv:hep-th/ v3 18 Feb 1993

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

N = 2 String Amplitudes *

Topics in Geometry: Mirror Symmetry

arxiv:hep-th/ v3 25 Aug 1999

Topological DBI actions and nonlinear instantons

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011

Homological Mirror Symmetry and VGIT

x k 34 k 34. x 3

Calabi-Yau Spaces in String Theory

Predictions for GW inv ts of a noncommutative resolution

New Toric Swiss Cheese Solutions

Phase transitions beyond the Landau-Ginzburg theory

D-branes and Normal Functions

(joint work with Atsushi Takahashi) Liverpool, June 21, 2012

Charmonium decays at the BESIII experiment

Relating DFT to N=2 gauged supergravity

GENERIC TORELLI THEOREM FOR QUINTIC-MIRROR FAMILY. Sampei Usui

Lightlike solitons with spin

F-theory and 2d (0, 2) Theories

Unification of Flavor, CP, and Modular Symmetries

Mirror symmetry. Mark Gross. July 24, University of Cambridge

Mirror symmetry for G 2 manifolds

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Berglund Hübsch Krawitz mirrors via Shioda maps

Topological Mirrors and Quantum Rings

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Microstates of AdS black holes and supersymmetric localization

One-loop corrections to heterotic flux compactifications,

Amplitudes & Wilson Loops at weak & strong coupling

Transcription:

Extending Hori-Vafa Richard S. Garavuso University of Alberta Collaboration: L. Katzarkov, M. Kreuzer, A. Noll

Outline. Hori-Vafa (hep-th/000) review (a) Hypersurface in WCP m (b) Complete intersection in WCP m. Extension to supervarieties (a) Hypersurface in WCP (m n) (b) Complete intersection in WCP (m n) 3. Period relations 4. Geometric interpretation 5. Supermanifold Hodge numbers 6. Conclusion

Hypersurface in WCP m M = {G = 0} WCP m (Q,...,Q m )[s] c (M) 0, Q i > 0 (i =,...,m) (,) U() gauged linear sigma model Z L = d 4 θ Φ i e QiV Φ i e ΣΣ i= Z t d θ «Z «Σ + c.c. + d θ PG(Φ) + c.c. t = r iϑ 3

superfield U() charge comments bosonic chiral Φ i Q i D ± Φ i = 0 P s D ± P = 0 bosonic vector V real bosonic twisted Σ D + Σ = 0 D Σ = 0 Σ = D + D V (x 0, x, θ ±, θ ± ) superspace Φ i = φ i + `θ + ψ +i + θ ψ i + θ + θ F i + P = p + Σ = σ + i `θ + λ + θ λ + θ + θ D + D± = θ ± iθ± x ± 0 «x D± = θ ± + iθ± x 0 ± «x 4

Φ i = φ i + θ + ψ +i + θ ψ i + θ + θ F i + P = p + Σ = σ + i θ + λ + θ λ + θ + θ D + Nonlinear sigma model phase r >> 0, σ = 0, p = 0 Pm (φ,...,φ m ) i= M = {G = 0} Q i φ i = r U() Landau-Ginzburg mirror period Z m Y Π = dy i dy P e Y P δ Q i Y i sy P t exp i= " # e Y i e Y P i= i= Re Y i = Φ i e Q i V Φ i, Re Y P = Pe sv P Φ i Φ i e iα i Y i Y i + ieα i 5

Complete intersection in WCP m C = l\ β= {G β = 0} WCP m (Q,..., Q m )[s,..., s l ] c (C) 0, Q i > 0 (i =,..., m) (,) U() gauged linear sigma model L = Z d 4 θ Z t Φ i e Q i V Φ i e ΣΣ i= 0 d θ «Z lx Σ + c.c. + @ d θ P β G β (Φ) + c.c. A β= Landau-Ginzburg mirror period Z 0 Y m ly Π = dy i @ dy Pβ e Y P β A i= β= 0 lx δ @ Q i Y i s β Y Pβ ta i= exp 4 β= lx e Y i i= β= e Y P β 3 5 6

Hypersurface in WCP (m n) M = {G = 0} WCP m (Q,..., Q m q,..., q n )[s] c (M) 0, Q i > 0 (i =,..., m), qa > 0 (a =,..., n) (,) U() gauged linear sigma model Z L = d 4 θ Φ i e Q i V Φ i + Ξ a e qav Ξ a e ΣΣ i= a= Z t d θ «Z «Σ + c.c. + d θ PG(Φ,Ξ) + c.c. Super Landau-Ginzburg mirror period Z Y m ny Π = dy i dy P e Y P dx a dη a dγ a i= a= δ Q i Y i sy P q a X a t i= " exp a= # e Y i e Y P e Xa ( + η a γ a ) i= a= Re X a = Ξ a e q av Ξ a Ξ a Ξ a e iβ a X a X a + i e β a 7

Φ i = φ i + `θ + ψ +i + θ ψ i + θ + θ F i + P = p + Ξ a = ξ a + `θ + b +a + θ b a + θ + θ χ a + Σ = σ + i `θ + λ + θ λ + θ + θ D + Nonlinear sigma model phase r >> 0, σ = 0, p = 0 M = {G = 0} ( (φ,...,φm ξ,...,ξn) ) Q i φ i + q a ξ a = r i= U() a= 8

Complete intersection in WCP (m n) l\ C = Gβ = 0 β= WCP m (Q,..., Q m q,..., q n )[s,..., s l ] c (C) 0, Q i > 0 (i =,..., m), qa > 0 (a =,..., n) (,) U() gauged linear sigma model Z L = d 4 θ Φ i e Q i V Φ i + Ξ a e qav Ξ a e ΣΣ i= a= 0 Z t d θ «Z lx Σ + c.c. + @ d θ P β G β (Φ,Ξ) + c.c. A i= β= β= Super Landau-Ginzburg mirror period Z 0 Y m ly ny Π = dy i @ dy Pβ e Y P β A dx a dη a dγ a 0 δ @ Q i Y i i= exp 4 lx s β Y Pβ β= e Y i i= a= q a X a ta a= lx e Y P β β= n X a= 3 e Xa ( + η a γ a ) 5 9

Period relations Π WCP (m n) (Q,...,Q m q,...,q n )[s] = Π WCP m (Q,...,Q m )[s,q,...,q n ] Π WCP (m n) (Q,...,Q m q,...,q n )[s,...,s l ] = Π WCP (m n+l ) (Q,...,Q m q,...,q n,s,...,s l )[s l ] = Π WCP (m n+l) (Q,...,Q m q,...,q n,s,...,s l ) 0

Geometric interpretation Consider the GLSM associated with M = {G = 0} WCP m (Q,..., Q m q,..., q n )[s] c (M) 0, Q i > 0 (i =,..., m), qa > 0 (a =,..., n). We obtain the super Landau-Ginzburg mirror period Z Π = δ exp m Y i= dy i dy P e Y P Q i Y i sy P i= " ny a= dx a dη a dγ a q a X a t a= e Y i e Y P i= Integrating over Y P yields Z Π = exp m Y i= ny a= " dy i "e t s my i= dx a dη a dγ a e Y i e s t i= Q i e Y i s my i= # e Xa ( + η a γ a ). a= # e Xa ( + η a γ a ). a= ny a= Q i e Y i s # e X qa a s ny a= e X qa a s

Now, consider the change of variables where e Y i = my j= y M ji j, e Xa = ny b= η a = x a ˆη a, γ a = x a ˆγ a, x N ba b, s = M ji Q i = i= N ba q a (j =,..., m ; b =,..., n). a= This change of variables is one-to-one up to the action of Γ : y j ω yj y j, x b ω xb x b, ˆη a ω x a ˆη a, ˆγ a ω x aˆγ a, my j= ω M ji y j =, ny b= ω N ba x b =, my j= In terms of the new variables, we obtain ω yj n Y b= ω x b =. where Π = ( ) m+n det (M ji ) det (N ba ) e t/s Z Y m ny dy i dx a dˆη a dˆγ a exp fw = + i= my i= j= y M ji j a= + x a a= + e t/s my j= ˆη aˆγ a n Y b= y j n Y b= x N ba b. x b h i fw,

Super Landau-Ginzburg orbifold W/Γ W = + m i= n a= m j= y M ji j ( + x a + e t/s m j= ˆη aˆγ a ) n b= y j n b= x N ba b. x b A-side super CY condition z } { Q i q a = s i= a= z B-side } { fw quasihomogeneous of degree s t When the A-side super CY condition is satisfied, we obtain { W = 0} M = Γ/ J WCP (m+n n), where ej : y j e πi n y j /s y j, x b e πi n x b /s x b, ˆη b e πi nˆη b /sˆη b, ˆγ b e πi nˆγ b /sˆγ b. 3

Supermanifold Hodge numbers.(a) Schimmrigk 993 & 996 (b) Candelas, Derrick & Parkes 993. Sethi, Nucl. Phys. B430 (994) 3. (a) Proposed correspondence between N = Landau-Ginzburg orbifolds with integral ĉ and N = nonlinear sigma models. (b) Heuristic method for computing supermanifold Hodge numbers. 3. Garavuso, Kreuzer & Noll JHEP 0903 (009) 007. Investigated the geometrical interpretations associated with Sethi s paper. 4. Categorical approach. 4

Consider a super Calabi-Yau hypersurface M = {G = 0} WCP (6 ) (,,,,,,3 q, q )[6], G = φ 6 + φ6 + φ6 3 + φ3 4 + φ3 5 + φ3 6 + φ 7 + ξ ξ. Via Sethi s proposed correspondence, for appropriately chosen (q, q ), M is associated with the Landau-Ginzburg orbifold where G bos /J bos, G bos = φ 6 + φ6 + φ6 3 + φ3 4 + φ3 5 + φ3 6 + φ 7 J bos : φ i e πiq i /s φ i. Using the techniques of Vafa (989) and Intriligator & Vafa (990), the Hodge diamond of G bos /J bos is determined to be 0 0 0 0 0 84 84. 0 0 0 0 0 The Hodge diamond of M should agree with this result. 5

Using Sethi s heuristic method for computing supermanifold Hodge numbers, one obtains for (q, q ) {(,5),(3,3)} untwisted sector z } { 0 0 0 0 0 83 83 0 0 0 0 0 + third twisted sector z } { 0 0 0 0 0 0 0 0 0 0 0 0. For (q, q ) = (,4), the only contribution to the Hodge diamond arises from the untwisted sector and we obtain 0 0 0 0 0 83 83. 0 0 0 0 0 Thus, for all possible choices of (q, q ), Sethi s heuristic method does not yield agreement with the Landau-Ginzburg orbifold Hodge diamond. 6