The Mu3e Experiment - Goal

Similar documents
Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85.

Update from the Mu3e Experiment

The Mu3e PSI

PoS(ICHEP2016)552. The Mu3e Experiment at PSI. Alessandro Bravar University of Geneva

The Mu3e PSI

The Mu3e Experiment. Niklaus Berger. Physics Institute, University of Heidelberg. Charged Lepton Flavour Violation Workshop, Lecce, May 2013

Track Fitting With Broken Lines for the MU3E Experiment

The Mu3e Experiment. A new search for μ eee with unprecedented sensitivity

Letter of Intent for an Experiment to Search for the Decay µ eee

The MEG/MEGII and Mu3e experiments at PSI. Angela Papa Paul Scherrer Institut on behalf of the MEG/MEGII and Mu3e collaborations

Department of Physics and Astronomy University of Heidelberg

Flex-Prints for the Mu3e Experiment

Department of Physics and Astronomy

Charged Lepton Flavour Violation:

clfv searches using DC muon beam at PSI

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

Flexprint Design Studies for the Mu3e Experiment

Observation of the rare B 0 s µ + µ decay

Early physics with the LHCb detector

arxiv: v1 [physics.ins-det] 1 Sep 2009

NA62: Ultra-Rare Kaon Decays

Final Results from the MEG Experiment and the Status of MEG-II

LFV in Tau Decays: Results and Prospects at the LHC. Tau th International Workshop on Tau Lepton Physics Beijing September 22th, 2016

Searches for New Physics in quarkonium decays at BaBar/Belle

Building a Tracking Detector for the P2 Experiment

Particle Identification of the LHCb detector

Results and perspectives of the MEG and MEG II experiments

Mu2e Experiment at Fermilab

COMET muon conversion experiment in J-PARC

LHCb Calorimetry Impact

Walter Hopkins. February

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Jacopo Pinzino CERN HQL /05/2018

The HL-LHC physics program

MEG II 実験の準備状況と 今後の展望 東京大学 素粒子物理国際研究センター 岩本敏幸 他MEG II コラボレーション 2018年9月14日 日本物理学会2018年秋季大会 信州大学 JSPS Core-to-Core Program

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Research Proposal for an Experiment to Search for the Decay µ eee

First light from. Gagan Mohanty

Search for K + π + νν decay at NA62 experiment. Viacheslav Duk, University of Birmingham for the NA62 collaboration

R. Mureşan. University of Oxford On behalf of LHCb Collaboration. Prepared for the CERN Theory Institute "Flavour as a Window to New Physics at LHC"

PoS(EPS-HEP2017)238. Experimental limiting factors for the next generation

Masaharu Aoki Osaka University

The Mu2e Transport Solenoid

Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

Search for heavy neutrinos in kaon decays

Status and prospects of the LHCb experiment

The Collider Detector at Fermilab. Amitabh Lath Rutgers University July 25, 2002

Testing the m-e universality with ±

PSI. Muon Experiment at the PSI, KEK

Jet reconstruction in LHCb searching for Higgs-like particles

Rare B decays in ATLAS and CMS

Searches for new Physics at HERA

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay

Future Belle II experiment at the KEK laboratory

Electroweak Physics at the Tevatron

Muon to Electron Conversion: Experimental Status in Japan and the US

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

Searches for Exotics in Upsilon Decays in BABAR

The NA62 Experiment. Seminar at LPNHE, Paris, France. Mathieu PERRIN-TERRIN. February 4, CERN, Geneva, Switzerland.

Search for Lepton Number Violation at LHCb

Seaches fo log-lived paticles with displaced signatues at the LHC. Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations

Overview of the COMET Phase-I experiment

Reconstruction of. events in LHCb. Benjamin Carron

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV

Experimental Searches for Muon to Electron Conversion

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute

EM Energy Spectrum from 17.6 MeV photons. Eduardo do Couto e Silva and Xin Chen Feb 13, 2002

Data Analysis for the MEG Experiment. Francesco Renga & Cecilia Voena INFN Roma

Searches for Lepton Flavor Violation. Update on BaBar Searches for Lepton Flavor Violation using Tau Decays

Complementary M H Measurements at ILC

The LHCb Upgrade and beyond

(Towards) First Physics with LHCb

Lepton Universality Tests with Kaons

APEX: Goals and Strategy

The W-mass Measurement at CDF

2017 NA62 Status Report to the CERN SPSC

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

CP Violation sensitivity at the Belle II Experiment

Future Prospects. BTeV at Fermilab: -Physics Expectations Will Johns Vanderbilt University. HCP2004, MSU East Lansing MI June 16, 2004 W.

Neutrino Oscillations and the Matter Effect

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

R. Fantechi CERN and INFN Sezione di Pisa on behalf of the NA62 Collaboration

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

2 ATLAS operations and data taking

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das

Flavour physics in the LHC era

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Physics potential of ATLAS upgrades at HL-LHC

Flavor Physics beyond the SM. FCNC Processes in the SM

Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC

André Schöning. Sebastian Bachmann, Christoph Dressler, Moritz Kiehn, Rohin Narayan, Dirk Wiedner. Institute of Physics University of Heidelberg

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA DIPARTIMENTO DI FISICA G. OCCHIALINI CORSO DI DOTTORATO IN FISICA E ASTRONOMIA CICLO XXVII

Status and expectations for first physics with LHCb. M. Needham On behalf of the LHCb collaboration Symmetries and Spin July 20 th - 26 th Prague

arxiv: v1 [physics.ins-det] 26 Sep 2018

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009

D 0 -D 0 mixing and CP violation at LHC

Early physics with Atlas at LHC

Transcription:

Christian Graf 14.3.2016 The Mu3e Experiment A Calibration Scheme for the Mu3e Tile Detector Master Thesis Presentation for MPI Munich

The Mu3e Experiment - Goal p µ DECAY MODES Fraction (Γ i /Γ) Confidence level (MeV/c) e ν e ν µ 100% 53 e ν e ν µ γ [d] (1.4±0.4) % 53 e ν e ν µ e + e [e] (3.4±0.4) 10 5 53 Lepton Family number (LF )violatingmodes e ν e ν µ LF [f ] < 1.2 % 90% 53 e γ LF < 5.7 10 13 90% 53 e e + e LF < 1.0 10 12 10-16 90% 53 e 2γ LF < 7.2 10 11 90% 53 Measure the decay µ + e + e + e - with a sensitivity of 10-16 Heavily suppressed in the SM by ~10-50 2

Background µ DECAY MODES Fraction (Γ i /Γ) Con e ν e ν µ 100% e ν e ν µ γ [d] (1.4±0.4) % e ν e ν µ e + e [e] (3.4±0.4) 10 5 Total energy of eee should add up to mµ Irreducible background: Internal conversion decays - Only distinguishable via Emiss Excellent momentum resolution needed (~0.5 MeV) ν e - ν e + Accidental Background - Vertex resolution (< 200µm) - Time resolution (< 100ps) ν e + ν 3

Rate Recurl Stations Sensitivity Phase 1 1x10 8 2 10-15 Phase 2 2x10 9 4 10-16 Pixel Detector Fibre Detector Tile Detector

Rate Recurl Stations Sensitivity Phase 1 1x10 8 2 10-15 Phase 2 2x10 9 4 10-16 Pixel Detector Fibre Detector Tile Detector

Tile Detector 3600 tiles (56x60) per station Tiles: 6.5mm x 6.0mm x 5.0mm Light detected by Silicon Photomultipliers (SiPMs) Read-out by STiC, directly under tiles Test-beam results time-resolution: ~60ps 6

A Calibration Scheme for the Mu3e Tile Detector Track Tile Matching Time Calibration of the Tile Detector 7

Track Tile Matching Next step towards full reconstruction: Assign time-stamps to tracks 1) Propagate track as a helix 2) Calculate point of impact on tiles 3) Find best suited hit in a certain range 8

Time Resolution of Signal Decays 700 600 Time Difference of all matched tracks in a frame h_dt_ic_all h_dt_ic_all Entries 535094 Mean 0.06135 RMS 19.07 500 400 300 200 # Entries 800 700 Entries 30161 χ 2 / ndf 44.5 / 23 Constant 699 ± 9.8 Mean 2.33 ± 1.38 Sigma 123 ± 1.2 100 0-60 -40-20 0 20 40 60 dt [ns] 600 500 400 300 200 100 0-1500 -1000-500 0 500 1000 1500 Time Difference [ps] No vertex fit: ~70ps of additional time resolution 9

Time Calibration of Tile Detector Tiles are connected by cables with different lengths signals arrive at different times Time calibration needed of ~10ps in ~10min 1) LED system 2) Easier: use muon decays in normal operation 10

Events for Calibration Need events where we exactly know the time difference between several hits 1) Internal conversion decays: - BR: 3x10-5 takes too long! 2) Hit Cluster: ~ 50% of particles hit more than one tile + high rate - calibration just between neighbors -Position 1 Cluster Map [%] 1.1 1.5 60 50 0 1.2 4.3 39.3 100.0 40 30-1 1.4 3.4 11.5 11.2 20-2 10 11-3 -2-1 0 1 z-position

Cluster Calibration Calibrate neighbors and propagate through whole detector calibrate in z direction calibrate in φ-direction 12

Calibration Results # Entries 160 140 Entries 3360 2 χ / ndf 109 / 69 Constant 143 ± 3.2 Mean -10 ± 0.3 Sigma 18.2 ± 0.3 120 100 80 60 40 20 0-100 -80-60 -40-20 0 20 40 60 80 100 D [ps] σ(tiles) < 20ps in 50ms of simulated data 13

Summary Track tile matching Time calibration with hit clusters # Entries 800 700 Entries 30161 χ / ndf 44.5 / 23 2 Constant 699 ± 9.8 Mean 2.33 ± 1.38 Sigma 123 ± 1.2 600 500 400 300 200 100 0-1500 -1000-500 0 500 1000 1500 Time Difference [ps] Dead time measurement Two test beam campaigns at PSI Number of Det. Photons -- 2. Surface SigAlpha = 0.2 h2_detected Entries 1090 CALICE: Geant4 tile uniformity studies y [mm] 10 5 100 90 80 0 70 60-5 50-10 40-15 30-15 -10-5 0 5 10 15 x [mm] 14

Thank you

Backup

Why? Lepton flavor violation (LFV) in neutrino sector SM forbids charged lepton flavor violation (at tree level) new physics µ eee tests on loop and tree diagrams Loop diagram: SUSY, Little Higgs, Seesaw models, Leptoquarks Tree diagram: Z, LFV Higgs, Extra Dimensions 17

µ Decay - Signal & Background µ DECAY MODES Fraction (Γ i /Γ) Con e ν e ν µ 100% e ν e ν µ γ [d] (1.4±0.4) % e ν e ν µ e + e [e] (3.4±0.4) 10 5 Total energy of eee should add up to mµ Internal conversion background Only distinguishable via Emiss Excellent momentum resolution needed 18

Accidental Background µ DECAY MODES Fraction (Γ i /Γ) Con e ν e ν µ 100% e ν e ν µ γ [d] (1.4±0.4) % e ν e ν µ e + e [e] (3.4±0.4) 10 5 ν e - ν e + Overlay of: Michel decays, radiative decays and internal conversion decays ν e + ν with processes as: Bhabha, compton or misreconstr. Dominant: Bhabha + 1 Michel requires: - momentum resolution - vertex resolution (< 200µm) - time resolution (< 100ps) bhabha 19

Tracking Pixel tracker for mom. resolution Multiple scattering (MS) dominates low material budget HV-MAPS technology Use recurler & high acceptance small, long tube design B 50 MeV/c 25 MeV/c 12 MeV/c 20

The Detector: Phase Ia Rate 2x10 7 Sensitivity 10-14 40cm Minimal configuration 4 layers of HV-MAPS (thinned to ~50µm) Glued on kapton foil, self-supporting Momentum resolution: 0.5 MeV 21

The Detector: Phase Ib Rate 1x10 8 Sensitivity 10-15 Adding sci. fibres in central station + recurl stations with sci. tiles Combined with Silicon Photomultipliers Time resolution fibres: ~1ns, tiles: ~100ps Limited by statistics 3-5 layers of 250µm fibres 22

The Detector: Phase II Rate 2x10 9 Sensitivity 10-16 Higher rate at a possible new beam-line Size matters: add two more recurl stations 23

Simulation Full detector simulation in Geant4: Optimize geometry Analysis with truth data: e. g. Background estimation Reconstruction development Vertex fit Track fitting Track-Tile matching Track-Fibre matching 24

Track Fitting No hardware trigger, read out everything Reconstruct every event on an online filter farm has to be fast! Multiple scattering fit Describe track as a sequence of triplets MS in middle hit of triplet Track = weighted mean of triplets 25

Tile Detector Studies rate [MHz] 0.6 0.5 h_total Phase II h_total Entries 172678 Mean -131.7 RMS 467 0.4 0.3 0.2 0.1 0-1000 -800-600 -400-200 0 200 400 600 800 1000 z position [mm] 26

Tile Detector Studies Phase II phi position 50 40 h_hitmap_track h_hitmap_track 1 Entries 64 Mean x -21.64 0.9 Mean y 28.25 RMS x 33.71 0.8 RMS y 16.75 0.7 phi position 50 40 h_hitmap_digi h_hitmap_digi Entries 161 Mean x -22.94 45 Mean y 27.37 RMS x 42.85 40 RMS y 16.41 35 0.6 30 30 0.5 30 25 20 0.4 0.3 20 20 15 10 0.2 10 10 0.1 5 0-100 -50 0 50 100 z position 0 0-100 -50 0 50 100 z position 0 27

Kinematics of Particles Hitting the Tile Detector # Entries / 1000 5 4 3 2 1 Entries 257318 10 Entries 257318 # Entries / 1000 8 6 4 2 0 0 10 20 30 40 50 60 Transverse Momentum [MeV] 0 0 10 20 30 40 50 60 z-momentum [MeV] 28

Track Tile Matching Resolution # Entries 800 700 600 2 χ / ndf 771.9 / 371 Constant 698.7 ± 3.8 Mean 2.164 ± 0.271 Sigma 64.42 ± 0.22 500 400 300 200 100 0-400 -200 0 200 400 Time Difference [ps] Phase 2 29

Calibration Precision over n Calibration Uncertainty [ps] 60 55 50 45 40 35 30 χ 2 / ndf 0.647 / 4 p0 135 ± 1.83 p1-4.05 ± 0.523 25 20 15 10 20 30 40 50 Calibration Time [ms] 30

Beam Infrastructure Cockcroft-Walton: accelerates hydrogen atoms to 870 kev 31

Beam Infrastructure Injector 2: 72 MeV Cyclotron 32

Beam Infrastructure Ring Cyclotron: 590 MeV 33

Beam Infrastructure Target E (rotating): 40mm of graphite generates π + -> µ + 34

Beam Infrastructure SINQ new beam line for phase 2 35

Misplaced SiPM y [mm] 15 10 Ratio of Det. Photons: SiPM 1mm deeper h2_detected Entries 951 1.4 1.3 y [mm] 15 10 Ratio of Det. Photons: SiPM 1mm higher h2_detected Entries 700 1.4 1.3 5 1.2 5 1.2 1.1 1.1 0 1 0 1-5 0.9-5 0.9-10 0.8 0.7-10 0.8 0.7-15 -15-10 -5 0 5 10 15 x [mm] 0.6-15 -15-10 -5 0 5 10 15 x [mm] 0.6 36

Thinner Tile y [mm] Ratio of detected photons: 2.8mm / 3.0mm thickness 15 10 h2_detected Entries 967 1.1 5 1.05 0 1-5 -10 0.95-15 -15-10 -5 0 5 10 15 x [mm] 0.9 37