Prospects of Reactor ν Oscillation Experiments

Similar documents
Updated three-neutrino oscillation parameters from global fits

Reactor Neutrino Oscillation Experiments: Status and Prospects

Neutrino Experiments with Reactors

The Double Chooz Project

Recent results from Super-Kamiokande

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

- Future Prospects in Oscillation Physics -

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

Solar and atmospheric ν s

Overview of Reactor Neutrino

Neutrino Oscillation and CP violation

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

( Some of the ) Lateset results from Super-Kamiokande

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Anomalies & CEνNS

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

arxiv: v3 [hep-ph] 23 Jan 2017

arxiv: v1 [hep-ex] 11 May 2017

Recent Discoveries in Neutrino Physics

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Outline. (1) Physics motivations. (2) Project status

The ultimate measurement?

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Non oscillation flavor physics at future neutrino oscillation facilities

Chart of Elementary Particles

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Neutrino Experiments with Reactors

Physics of Neutrino Oscillation Experiments. in the near future

Results and Prospects of Neutrino Oscillation Experiments at Reactors

Recent Results from RENO & Future Project RENO-50

KamLAND. Studying Neutrinos from Reactor

Chapter 2 Neutrino Oscillation

Current Results from Reactor Neutrino Experiments

Particle Physics: Neutrinos part I

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

Searching for non-standard interactions at the future long baseline experiments

Is nonstandard interaction a solution to the three neutrino tensions?

Neutrino Physics: Lecture 12

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Neutrino History ... and some lessons learned

The Daya Bay Reactor Neutrino Oscillation Experiment

Sterile Neutrinos. Carlo Giunti

Reactor-based Neutrino Experiment

Impact of light sterile!s in LBL experiments "

Andrey Formozov The University of Milan INFN Milan

Short baseline neutrino oscillation experiments at nuclear reactors

θ13 Measurements with Reactor Antineutrinos

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010

Status and Prospects of Reactor Neutrino Experiments

NEUTRINO OSCILLATIONS AND

Recent Results from T2K and Future Prospects

Complementarity Between Hyperkamiokande and DUNE

Neutrino Oscillation Physics

Neutrinos in Nuclear Physics

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

The Daya Bay Reactor Neutrino Experiment

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech

Neutrino Oscillations

10 Neutrino Oscillations

Mass hierarchy and CP violation with upgraded NOνA and T2K in light of large θ 13

Searching for Sterile Neutrinos with an Isotope β-decay Source: The IsoDAR Experiment

Daya Bay and joint reactor neutrino analysis

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

The Physics of Neutrino Oscillation. Boris Kayser INSS August, 2013

Neutrino Oscillations

Neutrino Oscillation: Non-Accelerator Experiments

Neutrino Pendulum. A mechanical model for 3-flavor Neutrino Oscillations. Michael Kobel (TU Dresden) PSI,

Status and prospects of neutrino oscillations

Status of Light Sterile Neutrinos Carlo Giunti

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

The Physics of Neutrino Oscillation

Daya Bay Neutrino Experiment

The Leptonic CP Phases

New index of CP phase effect and θ 13 screening in long baseline neutrino experiments

NEUTRINOS II The Sequel

Probing Extra-Dimensions with Neutrinos Oscillations

Neutrino Oscillations and the Matter Effect

Precise measurement of reactor antineutrino oscillations at Daya Bay

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Results from T2K. Alex Finch Lancaster University ND280 T2K

Review of νe Appearance Oscillation Experiments

Neutrino oscillation phenomenology

The NOνA Experiment and the Future of Neutrino Oscillations

The other oscillations: Atmospheric neutrinos

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Other Physics with Geo-Neutrino Detectors

New results from RENO and prospects with RENO-50

Neutrino phenomenology Lecture 2: Precision physics with neutrinos

Experimental Aspect of Neutrino Physics

Transcription:

Prospects of Reactor ν Oscillation Experiments F.Suekane RCNS, Tohoku Univ. Erice School 3/09/009 1

Contents * Motivation * Physics of Neutrino Oscillation * Accessible Parameters of Reactor Neutrinos * Possibilities of Reactor Neutrinos - @1 st Δm 13 Oscillation Maximum - @ nd Δm 13 O.M. - @1 st Δm 1 O.M. - @ nd Δm 1 O.M. * Summary

An exciting time is just around the corner... Huber et al., heo-ph/0907.1896 Now What reactor experiments could do next? 3

Issues for ν oscillation & solving methods (1) sin θ 13 ()Mass Hierarchy (3)θ 3 degeneracy (4) CP violating δ (1) ν µ => (accelerator) () ν µ => (accelerator) (3) Matter effect (accelerator) (4) ν µ =>ν µ (accelerator) (5) => (reactor) (6) Solar, Atmospheric Reactor xperiments are cost-effective way to get important information. Construction($$$) +ν=$$ Construction($~$$) ν= free 4

Physics of ν Oscillation (a different view) Oscillation Formula: Neutrino Mixing: ( ) = sin θ sin Δ 1 ; Δ 1 m m 1 P ν µ ν 1 ν cosθ sinθ = ν e sinθ cosθ ν µ ( )L 4E Time evolution of mass eigenstate Mass eignstate ν Equation of Motion: i d dt ν µ = µ e A µe ν e A µe µ µ ν µ θ µ µ µ e A µe Flavor Transitions: ν µ ν µ Transition Amplitudes ν µ µ e µ µ Α µe 5

What we measure by ν Oscillation ν µ ν µ µ e µ µ ν µ P( ν µ ) = sin θ sin Δm L 4E tanθ = A µe µ µ µ e Δm = µ µ +µ e ( ) ( µ µ µ e ) + 4A µe θ µ µ µ e A µe Α µe Existence of ν Oscillation is an evidence of finite A µe Transition amplitudes can be determined together with absolute mass. 6

Purpose of ν Oscillation experiment Physics of ν oscillation is to measure the flavor transition amplitudes (<= experimentalist) and think of its origin (<= theorist). Now we know ν α ν β exists. Non Standard Higgs? H 0 Sub Structure?? For Example, d d G s s π 0 0.7 0.7 0 η ~ 0.4 0.4 0.8 η 0.6 0.6 0.6 uu dd ss Or something else?? A NP? 7

3 Flavors case Transitions ν µ ν µ ν τ ν τ µ e ν µ ν τ ν µ ν τ ν µ Α µe ν τ Α τe ν µ Α µτ ν τ µ µ µ τ Α * µe Α * CPV phase τe Α * µτ Mixing ν µ ν τ U e1 U e U e3 = U µ1 U µ U µ 3 U τ1 U τ U τ 3 ν 1 ν ν 3 1 0 0 c 13 0 s 13 e iδ c 1 s 1 0 = 0 c 3 s 3 0 1 0 s 1 c 1 0 0 s 3 c 3 s 13 e iδ 0 c 13 0 0 1 ν 1 ν ν 3 Oscillation ( ) ( ) = δ 4 Re U αβ αi P ν α ν β P ν α ν β * * ( U βi U αj U βj )sin Δ ij Im U * * ( αi U βi U αj U βj )sinδ ij i> j i> j 8

U MNS ~ Our Current Knowledge m 3 m ~.6 10 3 ev, m m 1 ( ) ~ 8 10 5 ev 0.8 0.5 s 13 e iδ 0.4 0.6 0.7 0.4 0.6 0.7 s 13 < 0. If m 3 >m >>m 1 ~0, ν µ ν µ ν τ ν τ µ e ~3meV µ µ ~30meV µ τ ~30meV ν µ ν τ ν µ ν τ A eµ ~(30s 13 e iδ +3)meV A eτ ~(30s 13 e iδ 3)meV A µτ ~0meV (charged lepton=mass eigenstate) 9

Reactor neutrino ν ν ν ν ν ν ν are produced in β-decays of fission products. ~ 6 10 0 / s / reactor E ν ~ 4 +4 MeV σ( + p e + + n) 10

Accessible Oscillations by Reactor ν E-L Relation of Oscillation Experiments Up to now Future Reactor Prospect Reactor (~8MeV) Accelerator Bugey Goesgen PaloVerde CHOOZ DChooz DayaBay RENO 08050 F.Suekane@PMN08 11 Both Oscillations can be accessible E = Δm π L KK Opera MINOS TK NOVA KamLAND

P( ) = 1 cos 4 θ13 sin θ1 sin Δ1 sin θ13 (cos θ1 sin Δ 31 + sin θ1 sin Δ 3 ) KamLAND precise θ13 Reactor Neutrino Oscillation sinθ13=0.1 assumed 1. P(!e -->!e ) 1 0.8 0.6 Normal Hierarchy 0.4 Inverted Hierarchy 0. 0 1 Δm13 10 100 1000 L(km) Very precise θ 1 Mass Hierarchy 08050 1

Physics @ 1 st Δm 13 Maximum (L~1.5km) ; θ 13 1. 1 Reactor Neutrino Oscillation P(!e -->!e ) 0.8 0.6 0.4 0. 0 1 10 100 1000 L(km) P R ( ) 1 sin θ 13 sin Δ 31 Future xperiments strongly depends on θ 13 Precise measurement of θ 13 is very important. Parameter δ CP θ 3 degeneracy Mass Hierarchy Measurement Method [ P A ( ν µ ) P A ( ν µ )] @Δ ~ 0.1sinθ 13 sinδ 3 P A ( ν µ ) @Δ3 ~ 0.5sin θ 13 ± 0.05sinθ 13 sinδ [ P A ( ν µ ) + P A ( ν µ )] @Δ ~ sin θ 3 sin θ 13 3 ( ) L L ( ) P A ( ν µ ;L) + P A ν µ ; L [ ( )] @Δ ~ sign Δm 3 3 P R ( )sin θ 13 ( ) @Δ1 ~ 1 0.5sin θ 13 sin Δ 31 + tan θ 1 sin Δ 3 13

DoubleChooz, Dayabay, RENO Double Chooz Daya Bay RENO Double Chooz Dayabay RENO Power(GWth) 8.6GW 11.6GWth (17.4GW>011) 16.4GW Detector(ton) 8+8 0x4+(0x) 16+ Baseline(km) 1.05 1.8 1.4 sin θ 13 Sensitivity ~0.03 ~0.01 ~0.0 Operation start 010/011 011 010 Results: within ~5years 14

Complementarity of Reactor-Accelerator θ 13 measurement P AC θ 3 degeneracy 0.50 ± 0.11 ( ν µ ) = 1 0.00017L km Matter effect ( [ ]) sin θ 13 ± 0.045sinθ 13 sinδ δ dependece L=300km by Yasuda Accelerator Measurement Reactor Measurement 15

Settlement of θ 3 Degeneracy P( ν µ ) K.Hiraide, et al. PRD73, 093008(006) Accelerator 4MW*0.54Mt +6years sin Θ 3 Reactor: 100t * 0GW *5y P( ν µ ν µ ) P( ) Accelerator Only Accelerator+Reactor 16

3 rd Generation; More Precise θ 13 For higher statistics, θ 13 cam be measured by energy spectrum distortion and δsin θ 13 <0.01 is possible P.Hauber et al. hrp-ph/03033 RENO DC DB 17 1000ton x 0GW x 5year

Quick Access to δ CP δ CP =-π/ δ CP =0 δ CP =π/ δsin θ 13 =0.005 If θ 3 degeneracy and Mass Hierarchy are solved, only δ remains to be solved. Combination of high precision Reactor-θ 13 and Accelerator appearance may determine non-0 δ before anti-neutrino mode operation. 18

Parameter region to determine non-0 δ Accelerator Reactor 10ton x 0GW x 5year 100ton x 0GW x 5year H.Sugiyama hep-ph/041109v1 If sin θ 13 >0.05 there is a possibility to determine non-0 δ 19

P(!e -->!e ) 1. 1 0.8 0.6 0.4 0. Physics @ Δm 13 nd Maximum (L~5km) ( Δm 13 measurement) Reactor Neutrino Oscillation 0 1 10 100 1000 L(km) Δm 31 NH > Δm 3 m3 m m1 Δm 31 IH Δ 31 Δ 3 Δ 31 Δ 3 < Δm 3 m m1 m3 P R ( ) 1 sin θ 13 sin Δ 31 However, accurcy of δ Δm 31, Δm 31 In principle, Mass Hierarchy is accessible δ Δm 3 << Δm 1 ~ 3% are necessary. Δm 3 Δm 3 TK & Nova expected δ Δm 3 Δm 3 ~ 4% Need to improve θ 13 is necessary to evaluate δ Δm 13 (KamLAND case; δ Δm 1 Δm 1 ~.6% ) 0

Physics @ 1 st Δm 1 Maximum(L~50km) (Very Precise θ 1 & Mass Hierarchy) Example of Japan case 50km Focus point ΣP~47GW th 1. 1 Reactor Neutrino Oscillation P(!e -->!e ) 0.8 0.6 0.4 0. 0 1 10 100 1000 L(km) 1

P R Physics @ 1 st Δm 1 Maximum ( ) =1 cos4 θ 13 sin θ 1 sin Δ 1 ( ) +sin θ 13 cos θ 1 sin Δ 31 + tan θ 1 sin Δ 3 sin θ 1 Large Deficit Rrecise θ 1 Ripple Mass Hierarchy sin Δ 31 + tan θ 1 sin Δ 3

Precise θ 1 δsin θ 1 1 Λ L ( ), Λ= Deficit probability; Λ( L) = ( ) ~ 0.8 ( ) ~ 0.4 (KamLAND) Λ 50km Λ 180km P( ) ~ cos 4 θ ( 13 1 sin θ 1 sin Δ ) 1 H.Minakata, hep-ph/07-1070 f ν 1kton x5gw x.5y δ sin θ 1 sin θ 1 ( E)sin Δ 1 de ( E)dE δsin θ 1 ~ 1 ( δsin θ 1 ) KamLAND f ν & Low geo neutrino BKG (high ν flux) ~.4% ( 1σ ) Current Global fit δsin θ 1 sin θ 1 ~ 6.3% ( 1σ ) 3

Determination of Mass Hierarchy@50km Principle Petcov et al., Phys. Lett. B 533, 94 (00) S.Choubey et al., Phys. Rev. D 68,113006 (003) J. Learned et al., hep-ex/060 L.Zhan et al., hep-ex/0807.303 M.Batygov et al., hep-ex/0810.508 Ripple sin θ ( 13 sin Δ 31 + tan θ 1 sin Δ ) 3 Fourier Analysis => Power Spectrum Peaks at The smaller peak is and larger peak is Δm 3 It is essential that θ 1 is not maximum (tan θ 1 ~0.4) ω = Δm 31, Δm 3 Δm 31, Δ 3 Δ 31 ω Δm 31 > Δm 3 : Normal Hierarchy Δ 31 Δ 3 ω Δm 31 < Δm 3 : Inverted Hierarchy

J.Learned et al. arxive-0610 Inverted Hierarchy Normal Hierarchy Simulation of power spectrum If sin θ 13 =0.05, 3kton x4gw x yr, Mass Hierarchy can be determined with 1σ significance. L.Zhan et al.=> Mass Hierarchy could be determined if sin θ 13 >0.005. 5

Merit & Issues of this method. * Need not to know absolute m 3 so precisely. It is enough only to separate two peak positions. δe E < 3% E MeV * However, a good energy resolution; ( ) is necessary. Borexino case δe E ~ 5% E MeV ( ) improvement of light yield: x1.5 more PMT x1.8 with UltraBialkali photocathode δe E = 3% E MeV can be achieved ( ) * Energy smearing due to recoil neutron energy & baseline difference may degrade performance. => Need more studies for specific sites 6

DoubleChooz-50 RENO-50 L~50km experiment may be a natural extension of current Reactor-θ13 Experiments * θ13 detectors can be used as near detector * Small background from other reactors. DayaBay-50 7

Physics @ Δm 1 nd Maximum(L~150km) P(!e -->!e ) Reactor Neutrino Oscillation 1. 1 0.8 0.6 0.4 0. 0 1 10 100 1000 L(km) If SK detector is filled with LS, >0 times more statistics than KamLAND Δm 1 = 7.58 0.13 tan θ 1 = 0.56 0.07 ( ) +0.15 0.15 ( syst) 7.58 +0.03 0.03 ( stat) +0.15 0.15 ( syst) ( ) +0.10 +0. 0.06 ( syst) 0.56 0.014 ( stat) +0.10 0.06 ( syst) +0.14 stat +0.10 stat 8

1E+4 1E+3 1E+ Electron Antineutrino Event Rate at Kamioka Reactor f ν ( E ν ) σ E ν p e + n ν ( ) Inverse beta decay threshold Event rate (/year/kt//mev) 1E+1 1E+0 1E-1 1E- 1E-3 1E-4 1E-5 1E-6 1E-7 Geo- Solar (0.01%) from Past Super Novae Atmospheric 1E-8 1E+0 1E+1 1E+ 0kt KamLAND Antineutrino Energy (MeV) KamLAND 1 event/year sensitivity KamLAND detects any E>1.8MeV No Backgrounds >8MeV with 0Kton KamLAND pushes the limit 0 times better and may reach Relic SN. 9

Summary = Current = θ 13 : DoubleChooz, RENO, Dayabay are going to start in 010. δsin θ 13 =0.01~0.03 in a few years. = Future = L~1.8km, High Precision θ 13 ; M~100ton x 4GW th => δsin θ 13 <0.01 θ 3 Degeneracy with accelerator early sinδ detection with accelerator L=50km, M~3Kton x 4GW th, High Precision θ 1 ; Mass hierarchy determination L=180km 0Kton KamLAND??? It is important to discuss about the future strategy taking into account the reactor-accelerator complementarity after the 1 st phase θ 13 measurements. 30

Back up slides 31

Relation of mass, mixing & transition amplitudes ν µ µ e µ µ ν µ m 1 = 1 µ +µ µ e m = 1 µ +µ + µ e ( µ µ µ e) + 4A µe ( µ µ µ e) + 4A µe θ µ µ µ e A µe ν µ tanθ = A µe µ µ µ e Α µe Δm = ( µ µ +µ e ) ( µ µ µ e ) + 4A µe 3

P Accel ( ν µ ) P Accel ν µ ( ) P Re actor ( ) Reactor θ 13 helps to pin down parameters 33