accelerator physics and ion optics summary longitudinal optics

Similar documents
accelerator physics and ion optics summary longitudinal optics

Accelerator Physics Homework #3 P470 (Problems: 1-5)

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

The A, B, C and D are determined by these 4 BCs to obtain

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Accelerator Physics Homework #7 P470 (Problems: 1-4)

S9: Momentum Spread Effects and Bending S9A: Formulation

USPAS Accelerator Physics 2013 Duke University

Bernhard Holzer, CERN-LHC

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

USPAS Accelerator Physics 2017 University of California, Davis

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Emittance preserving staging optics for PWFA and LWFA

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

Equations of motion in an accelerator (Lecture 7)

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Lattice Design and Performance for PEP-X Light Source

Low Emittance Machines

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

arxiv: v2 [physics.acc-ph] 18 Nov 2015

Low Emittance Machines

Low Emittance Machines

Transverse Dynamics II

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material

COMBINER RING LATTICE

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Longitudinal Dynamics

Bernhard Holzer, CERN-LHC

Introduction to Collider Physics

Non-linear dynamics Yannis PAPAPHILIPPOU CERN

Physics 598ACC Accelerators: Theory and Applications

Introduction to particle accelerators

Accelerator Physics Final Exam pts.

Physics 610. Adv Particle Physics. April 7, 2014

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN

TRANSVERSE BEAM DYNAMICS

Non-linear dynamics! in particle accelerators!

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics

Beam-Based Measurement of Dynamical Characteristics in Nuclotron

Hill s equations and. transport matrices

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

High performance computing simulations. for multi-particle effects in the synchrotons

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Wed Jan 25 Lecture Notes: Coordinate Transformations and Nonlinear Dynamics

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1

Particle Accelerators: Transverse Beam Dynamics

S. Guiducci. Table 1 PADME beam from Linac. Energy (MeV) 550. Number of positrons per pulse Pulse length (ns)

Introductory slides: Ferrite. Ferrite

33 ACCELERATOR PHYSICS HT E. J. N.

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Instabilities Part III: Transverse wake fields impact on beam dynamics

accelerator physics and ion optics summary damping and cooling

Accelerator Physics. Accelerator Development

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions

On-axis injection into small dynamic aperture

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

Lattices for Light Sources

An Introduction to Particle Accelerators. v short

Nonlinear Single-Particle Dynamics in High Energy Accelerators

A Proposal of Harmonictron

Introduction to Transverse Beam Dynamics

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Accelerator Physics Multipoles and Closed Orbits. G. A. Krafft Old Dominion University Jefferson Lab Lecture 13

Measurement of global and local resonance terms

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

The optimization for the conceptual design of a 300 MeV proton synchrotron *

Matching of Siberian Snakes

Extraction from cyclotrons. P. Heikkinen

Conceptual design of an accumulator ring for the Diamond II upgrade

Parametrization of the Driven Betatron Oscillation

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap.

09.lec Momentum Spread Effects in Bending and Focusing*

Proposta per l'uso di DAFNE come allungatore d'impulso per il fascio di positroni del Linac

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

Single Particle Motion

Lattices and Emittance

Part II Effect of Insertion Devices on the Electron Beam

Evolution of the Muon Distribution in the g-2 Ring

Effect of Insertion Devices. Effect of IDs on beam dynamics

Transverse Beam Dynamics II

NOVEL METHOD FOR MULTI-TURN EXTRACTION: TRAPPING CHARGED PARTICLES IN ISLANDS OF PHASE SPACE

Compressor Lattice Design for SPL Beam

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox

Accelerator Physics Issues of ERL Prototype

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

Thu June 16 Lecture Notes: Lattice Exercises I

Synchrotron radiation

Pretzel scheme of CEPC

Practical Lattice Design

Linear Imperfections Oliver Bruning / CERN AP ABP

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1

Nonlinear dynamics. Yichao Jing

Transcription:

accelerator physics and ion optics summary longitudinal optics Sytze Brandenburg sb/accphys003_5/1

feedback energy difference acceleration phase stability when accelerating on slope of sine low energy: rising slope high energy (above transition): falling slope stable region depends on phase reference particle sb/accphys003_5/

concept longitudinal optics same as transverse motion transverse: quadrupole longitudinal: buncher phase difference energy difference at time focus phase difference strongly reduced initial energy spread blurs time focus sb/accphys003_5/3

accelerator physics and ion optics distortion and resonances Sytze Brandenburg sb/accphys003_5/4

dipole error induced by dipole magnet different strength different length dipole kick ( ) quadrupole magnet BL = BL+ B L y y y positioning error x and/or y B y (x) = gx; B x (y) = -gy ( BL) y dipole kick = g xl sb/accphys003_5/5

dipole error single error along circumference angle kick x = (B y L)/Bρ largest effect when close to F-quadrupole minimum divergence, maximum beamsize smallest effect when close to D-quadrupole maximum divergence, minimum beamsize sb/accphys003_5/6

dipole error at F-quadrupole sb/accphys003_5/7

dipole error at F-quadrupole sb/accphys003_5/7

dipole error at F-quadrupole sb/accphys003_5/7

dipole error at F-quadrupole sb/accphys003_5/7

dipole error at F-quadrupole sb/accphys003_5/7

dipole error at F-quadrupole sb/accphys003_5/7

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

error at D-quadrupole sb/accphys003_5/8

closed orbit distortion δ-function kick ( BL) ( ) y q BL y x' = = Bρ requirement for closed orbit: after one turn x x = R, R matrix for full turn ' ' ' x x x p sb/accphys003_5/9

solution in space coordinates R cosπ Q +α sinπq β sinπq 0 0 = γ0 sinπq cos πq α0 sin πq α 0, β 0 and γ 0 depend on location field error ( ) ( ) x cosπ Q+α sinπq 1 + x' β sinπ Q= 0 0 0 0 0 x γ sinπ Q+ x' cosπq α sinπq 1 = x' 0 0 0 0 solution x 0 = β 0 x' tan π Q x' α0 x' 0 = 1 tanπq Q integer amplitude explodes resonance sb/accphys003_5/10

solution in Floquet coordinates Floquet coordinate transformation (see also lecture 3) ( ) ( s) s x s 1 d σ η( s) ψ ( s) = β Q βσ ψ changes by π per turn 0 ( ) field perturbations along orbit given by ( ) Fs = B y Bρ ( s) equation of motion of η 3 d η Q s Q F s + η=β dψ ( ) ( ) sb/accphys003_5/11

δ-function perturbation equation inhomogeneous in one point except at perturbation homogeneous solution ( ) ( ) ( ) η s =η cosq ψ s ψ π =η cosφ K K K c phase at perturbation -Qπ decreasing φ c from zero: approaching from above Qπ increasing φ c from zero: approaching from below sb/accphys003_5/1

at perturbation dη KQsin c 0Qsin( Q ) 0QsinQ d = η φ = η π =η π ψ + dη = ηkqsinφ c = η0qsinqπ d ψ dx relate to real kick ds dψ 1 dx dη 1 dη = = β K = ds Qβ ds ds Q β dψ sb/accphys003_5/13 K ( BL) y x' dx = = = K π Bρ ds η = K β K sinqπ ( BL) y Bρ η β K sinq K

graphical representation complete turn - perturbation: φ c = πq orbit should be closed: φ c = πn η K = 0 (trivial solution, no kick) kick closes orbit φ K = π(n-q) φ = Qπ φ = Qπ dη/dψ η sb/accphys003_5/14

distorted orbit ( s) β ( BL) y β K x( s) = β( s) η ( s) = cosq ψ s ψ π sinqπ Bρ ( ( ) K ) distortions at locations s Ki, corresponding to ψ Ki sum contributions β ( BL) Ki y x( s) = β( s) cosq ψ( s) ψki π i sinqπ Bρ ( ) sb/accphys003_5/15

Fourier analysis of perturbations equation of motion of η 3 d η Q s Q F s + η=β dψ ( ) ( ) expand β 3/ F(s) in Fourier series (periodic system) d η + η=β = dψ 3 ( ) ikψ Q s Q F ( s) Q fke k= 1 π π 3 ik 1 1 ψ 1 ikψ( s) fk = β ( s) F( s) e dψ = β ( s) F( s) e ds π πq 0 0 dψ 1 = ds Q β K sb/accphys003_5/16

Fourier analysis of perturbations equation of motion of η 3 d η Q s Q F s + η=β dψ ( ) ( ) expand β 3/ F(s) in Fourier series (periodic system) d η + η=β = dψ 3 ( ) ikψ Q s Q F ( s) Q fke k= 1 π π 3 ik 1 1 ψ 1 ikψ( s) fk = β ( s) F( s) e dψ = β ( s) F( s) e ds π πq 0 0 solution η= Re k= 1 Q Q fk k e ikψ sb/accphys003_5/16

η= Re k= 1 Q Q fk k e ikψ amplitude very large for Q close to k resonance 100 Q / Q -k 10 sb/accphys003_5/17 1 3.6 3.8 4.0 4. 4.4 Q

η= Re k= 1 Q Q fk k e ikψ amplitude very large for Q close to k resonance 10 5 Q = 6.4 Q /(Q -k ) 0-5 -10 0 5 10 15 0 k sb/accphys003_5/17

closed orbit bumps correction of field perturbations displacement of closed orbit for injection and extraction ( ) BL y x( s) = β s βk sin φ φ Bρ ( ) ( ) simplest case: betatron phase advance π between two bumps K sb/accphys003_5/18

closed orbit bumps correction of field perturbations displacement of closed orbit for injection and extraction ( ) BL y x( s) = β s βk sin φ φ Bρ ( ) ( ) simplest case: betatron phase advance π between two bumps x' K δ1 δ x sb/accphys003_5/18

more general case: three field bumps: control x at specific location four field bumps: control x and x at specific location sb/accphys003_5/19

more general case: three field bumps: control x at specific location four field bumps: control x and x at specific location x' δ1 δ3 δ x sb/accphys003_5/19

general transfer matrix β ( cos φ+α1sin φ) ββ 1 sin φ x β1 x x' = 1 x' β1 ( α α ) cos φ+ ( 1+α α ) sin φ ( cos φ α sin φ) 1 1 1 1 ββ β 1 x() related to x (1) ( ) =δ ββ sin( φ φ ) x 1 1 1 x (3) related to x(): by going backward ( ) =δ ββ sin( φ φ ) x δ1 β 1 = sinφ 3 3 3 δ β 3 3 sinφ 3 1 sb/accphys003_5/0

bump δ determined by change of x at x() dx dx dφ = ds d φ ds dx 1 β =δ ββ cos φ ϕ =δ φ ϕ ds 1 ( ) cos( ) 1 1 1 1 1 β β + dx β =δ cos φ ϕ ds ( ) 3 3 3 β + dx dx δ = ds + ds after some algebra δ1 β1 δ β δ β = = sinφ sinφ sinφ 3 3 3 13 1 sb/accphys003_5/1

closed orbit correction profile monitors at each quadrupole sensitivity proportional to β horizontal at F-quadrupole vertical at D-quadrupole steering magnets at each quadrupole effect proportional to β horizontal at F-quadrupole vertical at D-quadrupole use magnets n-1, n and n+1 to correct error n linear problem N equations, N unknowns matrix inversion sb/accphys003_5/

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

injection: transversal stacking displace closed orbit with injection magnets in ring inject one pulse reduce strength injection magnets inject next pulse etc. sb/accphys003_5/3

quadrupole error matrix of nominal quadrupole magnet (thin lense) 1 0 g MQ = By( x) = gx k = kl 1 Bρ matrix of perturbed quadrupole magnet M Q+ Q 1 0 ( k+ k) L 1 matrix one turn with perturbed quadrupole 1 1 0 M= MQ+ QMQM0 = M0 kl 1 sb/accphys003_5/4

cosφ 0 +α0sinφ0 β0sinφ0 M = kl( cos 0 0sin 0) 0sin 0 kl 0sin 0 cos 0 0sin φ +α φ γ φ β φ + φ α φ0 α 0, β 0, γ 0 and φ 0 : betatron functions and phase at quadrupole Tr(M) = cos φ cosφ= cosφ klβ sinφ 0 0 0 1 cosφ= φsinφ 0 = klβ0sinφ φ klβ0 Q = = π 4 π 0 sb/accphys003_5/5

second order resonance angle kick proportional to position ( ) dx s = x s kl = klη0 β s cosφ s ds ( ) ( ) ( ) in (η, φ)-coordinates dη = klη0βcosφ dφ dη dη dφ dη = =β dφ ds ds ds φ = π Q dη/dφ η sb/accphys003_5/6

second order resonance dη 1 η 0 = sin kl 0 cos sin kl 0 sin d φ= ηβ φ φ= ηβ φ φ 1 dη klβ φ= cosφ= klβcos φ= ( 1+ cosφ) η0 dφ φ klβ Q= = 1+ cosφ π 4π ( ) φ = π Q dη/dφ resonance for Q = N/ η sb/accphys003_5/7

width second order resonance dη 1 η 0 = sinφ= klηβ 0 cosφsinφ= klηβ 0 sinφ d φ per turn φ= πq resonance for φ = 4πQ= πn Q = N/ φ klβ Q = = ( 1+ cosφ) π 4π klβ Q oscillates in band with width Q = 4π if Q - N/ < Q locking in resonant condition at some moment in Q-oscillation Q = N/ sb/accphys003_5/8

why resonance for Q = N/ coordinates at passage of quadrupole x 0, x 0 kick (kl)x 0 after one turn for Q = N coordinates x 1 = x 0 + δx, x 1 = x 0 +(δx), kick (kl)x 1 after one turn for Q = M/ coordinates -x 1 = -(x 0 + δx), -x 1 = -(x 0 +(δx) ), kick - (kl)x 1 mirror symmetry kicks coherent for Q = N and Q = M/ sb/accphys003_5/9

sextupole error second order effect angle kick proportional to x ( ) dx s db L db L x s 0 s cos s ds = dx Bρ = dx Bρ η β φ y y ( ) ( ) ( ) analysis analogous to quadrupole error in (η, φ)-coordinates dby L 0 cos 3 dη d = β η φ φ dx Bρ dη dφ dη dφ = =β ds ds dη ds sb/accphys003_5/30

third order resonance 3 dη dby L η 0 = sin 0cos sin d φ = β η φ φ φ dx Bρ 3 1 dη db y L 3 φ= cosφ= β η 0 cos φ η0 dφ dx Bρ dby 3 L = β η0 φ+ φ dx 8Bρ 3 dby ( cos3 3cos ) φ β L Q= = η0 cos3φ+ 3cosφ π 16π dx Bρ ( ) Q close to N/3 resonance second term averages out in three turns sb/accphys003_5/31

width third order resonance 3 dby β L Q= η0 cos3φ+ 3cosφ 16π dx Bρ ( ) β dby L Q moves in band Q Q < η 16π dx Bρ 3 0 0 amplitude changes given by dby L a =β a sin3 dx 8Bρ φ Q = N/3 amplitude grows quadratically no locking because Q amplitude dependent amplitude growth faster than change in Q beam losses sb/accphys003_5/3

third order resonant extraction Q= dby β L a 16π dx Bρ Q = N/3 - Q: particles will not hit resonance for a < 16πBρ Q dby βl dx stable area reduce Q with quadrupoles particles pushed into unstable area can be extracted from ring sb/accphys003_5/33

third order resonant extraction stable area particles on closed orbit Q periods per turn unstable area jump from one trajectory to another Q = p/3 step π/3 Q = p/3 step 4π/3 Q = p step π sb/accphys003_5/34

Fourier analysis Fourier expansion of perturbation around ring P ( ψ ) = k p coskψ response on single perturbation n = quadrupole; n = 3 sextupole 1 Q = βpcosnqψ π overall response π 1 Q= βp( ψ) cosnqψdψ π 0 π 1 = βpk cosnqψcoskψdψ π 0 large for nq = k driven by single harmonic of distribution sb/accphys003_5/35

resonance zoo simple resonance mq x = p; nq y = p coupling resonances drive e.g. rotated quad mq x ± nq y = p + sign: beamloss - sign exchange of amplitude sb/accphys003_5/36

chromaticity tune on momentum (second order) Q = Q p/p 0 caused by momentum dependence focussing 1 db k = y k p = B ρ dx k p 0 treatment analogous to quadrupole error π π 1 1 p Q = β( s) k( s) ds= β( s) k( s) ds 4π 4π p 0 0 0 typical value Q 1.3 Q; Q 5 p/p 0 = x 10-3 ; Q 0.15 too large to escape resonances sb/accphys003_5/37

chromaticity tune on momentum (second order) Q = Q p/p 0 caused by momentum dependence focussing 1 db k = y k p = B ρ dx k p 0 treatment analogous to quadrupole error π π 1 1 p Q = β( s) k( s) ds= β( s) k( s) ds 4π 4π p 0 0 0 typical value Q 1.3 Q; Q 5 p/p 0 = x 10-3 ; Q 0.15 too large to escape resonances momentum dependent additional focussing needed sb/accphys003_5/37

dispersion function: radius depends on momentum magnet with radial dependent gradient = sextupole locations with large dispersionfunction h By x,y = x y Bx x,y = hxy sextupole ( ) ( ) ( ) sb/accphys003_5/38

focussing strength hd k = B ρ p p 0 0 0 0 ( ) ( ) π π 1 1 p hsds Q = β( s) k( s) ds= β( s) ds 4π 4π p Bρ separate correction for Q x and Q y two sets of sextupoles width third order resonance amplitude dependent constraints on useful acceptance sb/accphys003_5/39

next lecture damping and cooling reading material Wilson: chapter 8 Electrons Wilson: chapter 1 Cooling CERN Accelerator School 199, CERN report 94-01 Chapter 18 Synchrotron radiation Chapter 4 Cooling techniques presentations and excercises available in PDF-format on http:\\www.kvi.nl\~brandenburg sb/accphys003_5/40