Granular materials (Assemblies of particles with dissipation )

Similar documents
cooperative motion in sheared granular matter Takahiro Hatano

This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing.

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Inhomogeneous elastic response of amorphous solids

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

Jamming and the Anticrystal

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Measurements of the yield stress in frictionless granular systems

arxiv:submit/ [cond-mat.soft] 13 Jul 2010

Discontinuous Shear Thickening

Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming

Rheology of Soft Materials. Rheology

Micro-Macro transition (from particles to continuum theory) Granular Materials. Approach philosophy. Model Granular Materials

Jamming. Or, what do sand, foam, emulsions, colloids, glasses etc. have in common? Or, transitions to rigidity in disordered media

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Structural Signatures of Mobility in Jammed and Glassy Systems

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1.

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014

Extended kinetic theory applied to dense, granular, simple shear flows

University Graz / Austria Institut für Chemie Volker Ribitsch

arxiv: v1 [cond-mat.soft] 29 Sep 2016

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

collisions inelastic, energy is dissipated and not conserved

Interfacial dynamics

Steady Flow and its Instability of Gravitational Granular Flow

Statistical Mechanics of Jamming

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

Mechanics of Granular Matter

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Clusters in granular flows : elements of a non-local rheology

Effective Temperatures in Driven Systems near Jamming

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Indiana University, January T. Witten, University of Chicago

Supplementary Information. Text S1:

arxiv:cond-mat/ v2 [cond-mat.soft] 28 Mar 2007

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

Structural signatures of the unjamming transition at zero temperature

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Sheared foam as a supercooled liquid?

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method

5 The Oldroyd-B fluid

Lecture 7: Rheology and milli microfluidic

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

arxiv: v1 [cond-mat.soft] 5 Jun 2018

Simple shear flow of collisional granular-fluid mixtures

The Mechanics of Fire Ants. Mechanics of Soft Matter April 5 th, 2018 Moira Bruce, Karan Dikshit & Rob Wagner

arxiv: v1 [cond-mat.soft] 15 May 2013

(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e

VISCOELASTIC PROPERTIES OF POLYMERS

arxiv:cond-mat/ v2 [cond-mat.soft] 18 Dec 2006

Stress anisotropy in shear-jammed packings of frictionless disks

Flow of Glasses. Peter Schall University of Amsterdam

arxiv: v2 [cond-mat.soft] 7 Nov 2014

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE

Frictional Jamming & MRJ/RLP crossover

The response of an idealized granular material to an incremental shear strain

Mechanics of Earthquakes and Faulting

Local Anisotropy In Globally Isotropic Granular Packings. Kamran Karimi Craig E Maloney

Athermal, Quasi-static Deformation of Amorphous Materials

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Xiaoming Mao. Department of Physics and Astronomy, University of Pennsylvania. Collaborators: Tom Lubensky, Ning Xu, Anton Souslov, Andrea Liu

Workshop on Sphere Packing and Amorphous Materials July 2011

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Granular Micro-Structure and Avalanche Precursors

Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles

On Phase Transition and Self-Organized Critical State in Granular Packings

Guideline for Rheological Measurements

Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening

Dry granular flows: gas, liquid or solid?

Glass Transition as the Rheological Inverse of Gelation

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different

SOME ISSUES AND PERSPECTIVES IN GRANULAR PHYSICS

Nonlinear viscoelasticity of metastable complex fluids

Flow in two-dimensions: novel fluid behavior at interfaces

arxiv: v1 [cond-mat.soft] 6 Dec 2017

Lecture 6: Flow regimes fluid-like

Dry and wet granular flows. Diego Berzi

Contents. Preface XIII. 1 General Introduction 1 References 6

Cover Page. The handle holds various files of this Leiden University dissertation.

JournalName. Stress anisotropy in shear-jammed packings of frictionless. 1 Introduction

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Introduction to Marine Hydrodynamics

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

Critical scaling near the yielding transition in granular media

Summer School: Granular Materials from Simulations to Astrophysical Applications

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System

(2.1) Is often expressed using a dimensionless drag coefficient:

Table of Contents. Preface... xiii

Dynamic Analysis Contents - 1

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

SEISMOLOGY. Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI

Tuning granular matter rheology using externally supplied vibrations

Pharmaceutics I. Unit 6 Rheology of suspensions

Rheological And Dielectric Characterization of Thermosetting Polymers. Jeffrey Gotro, Ph.D.

Way to Success Model Question Paper. Answer Key

Viscoelastic Flows in Abrupt Contraction-Expansions

Transcription:

Granular materials (Assemblies of particles with dissipation ) Saturn ring Sand mustard seed Ginkaku-ji temple

Sheared granular materials packing fraction : Φ Inhomogeneous flow Gas (Φ = 012) Homogeneous flow (Shear rate γ) Dense liquid (Φ = 08) No flow Amorphous solid (Φ = 085)

Jamming transition Below ΦJ Above ΦJ Homogeneous flow (Shear rate γ) Dense liquid (Φ = 08) Transition point ΦJ Onset of rigidity No flow Amorphous solid (Φ = 085)

Rheology under steady shear frictionless case Shear stress σ T Hatano, M Otsuki, S Sasa, J Phys Soc Jpn, 76, 023001 (2007) non-linear rheological property For Φ < ΦJ, σ γ 2 (liquid) For Φ > ΦJ, σ const (solid) For Φ ΦJ, σ γ y γ Shear rate γ

Rheology under steady shear Shear stress σ T Hatano, M Otsuki, S Sasa, J Phys Soc Jpn, 76, 023001 (2007) σ / Φ - ΦJ β frictionless case T Hatano, J Phys Soc Jpn, 77, 123002, (2008) Shear rate γ non-linear rheological property For Φ < ΦJ, σ γ 2 (liquid) For Φ > ΦJ, σ const (solid) For Φ ΦJ, σ γ y γ scaling plot Critical scaling law γ Φ-ΦJ -α σ(γ, Φ) = Φ - ΦJ y Φ S±(γ Φ-ΦJ -α )

Theory for exponents M Otsuki and H Hayakawa, PRE, 80, 011308, (2009) Three Critical scaling laws T(γ, Φ) = Φ - ΦJ x Φ τ±(γ Φ-ΦJ -α ) σ(γ, Φ) = Φ - ΦJ y Φ S±(γ Φ-ΦJ -α ) P(γ, Φ) = Φ - ΦJ y Φ p±(γ Φ-ΦJ -α ) Four Assumptions S / P is constant P in high density region : P ~ Φ Characteristic time : P-1/2 Low density region : collision frequency T 1/2 Theoretical prediction for critical exponents Coulomb s friction : Hatano (2007) O Hern, et al, (2003) Wyart, et al (2005) Kinetic theory xφ = 3, yφ = 1, yφ = 1, α = 5/2 (for disks) Linear repulsive force

Rheology under steady shear frictionless case σ / ΔΦ T Hatano, J Phys Soc Jpn, 77, 123002, (2008) M Otsuki and H Hayakawa, PRE, 80, 011308, (2009) σ(γ, Φ) = Φ - ΦJ y Φ S±(γ Φ-ΦJ -α ) Theoretical prediction : α = 1, yφ = 2/5 (for disk) linear repulsive force γ ΔΦ -α σ(γ, Φ) = ΔΦ S±(γ / ΔΦ 5/2 ) ΔΦ = Φ - ΦJ

Problem The system under steady shear is not suitable to study the rigidity near the jamming transition In experiments, the steady shear is hard to realize We numerically investigate the rheological properties under oscillatory shear (OS)

Previous study on the system under OS B Tighe, PRL 107,158303 (2011) Complex shear modulus G* G : real part close to the critical point close to the critical point G : imaginary part frequency ω System no mass, fixed contact networks, tangential friction Complex shear modulus exhibits critical scalings

Purpose of this work In the previous work, the attention is restricted to the small shear limit and the change of the contact network is not considered However, the change of the network dominates the rheological property near the jamming transition point We investigate the rheological properties under OS in a wide range of shear amplitude

Fn Fn Fn = k δ - η δ Elastic part Dissipative part

Shear strain : γ(t) = γ0 cos (ωt) Amplitude : γ0, Frequency : ω Shear stress : σ(t) Volume fraction : Φ Shear modulus : G* = G + i G G dt σ(t) cos (ωt) / γ0 Real part Storage modulus G - dt σ(t) sin (ωt) / γ0 Imaginary part Loss modulus G * (γ0, ω, Φ)

Shear strain : γ(t) = γ0 cos (ωt) Amplitude : γ0, Frequency : ω Shear stress : σ(t) Volume fraction : Φ Shear modulus : G* = G + i G G dt σ(t) cos (ωt) / γ0 Real part Storage modulus G - dt σ(t) sin (ωt) / γ0 Imaginary part Loss modulus G * (γ0, ω, Φ)

σ = σe + σk, σe = E γ, σk = η γ G = E, G = η ω Shear stress σ(t) red ω = 10-4 green ω = 10-3 blue ω = 10-2 ω 0 slope G width G Shear strain γ(t) Complex shear modulus G* G storage modulus G loss modulus G ω frequency ω

G * (γ0, ω, Φ) γ0 1 G * (γ0, ω, Φ) γ0 < 1 G * (γ0, ω, Φ) ω 0

G*(γ0, ω, Φ) γ0 1 Complex shear modulus G* Φ= 067, γ0=1 G loss modulus G storage modulus frequency ω Shear stress σ(t) ω 0 Φ= 067, γ0=1 Shear strain γ(t)

G*(γ0, ω, Φ) γ0 1 Complex shear modulus G* Φ= 067, γ0=1 G loss modulus G storage modulus frequency ω ω 0 elastic plastic plastic elastic σ = { E γ, (γ < γc) σy, (γc < γ)

G*(γ0, ω, Φ) γ0 1 Storage modulus G close to ΦJ red Φ = 067 green Φ = 066 blue Φ = 065 magenta Φ = 0648 γ0=1 γ0=1 Loss modulus G close to ΦJ red Φ = 067 green Φ = 066 blue Φ = 065 magenta Φ = 0648 frequency ω frequency ω

G*(γ0, ω, Φ) γ0 1 G*(ω, Φ) = ΔΦ g(ω / ΔΦ 5/2 ) ΔΦ = Φ - ΦJ γ0=1 γ0=1 G / Δφ red Φ = 067 green Φ = 066 blue Φ = 065 magenta Φ = 0648 G / Δφ red Φ = 067 green Φ = 066 blue Φ = 065 magenta Φ = 0648 ω / Δφ 5 / 2 ω / Δφ 5 / 2 γ0 σ(γ, Φ) = ΔΦ F±(γ / ΔΦ 5/2 )

G * (γ0, ω, Φ) γ0 > 1 G * (γ0, ω, Φ) γ0 < 1 G * (γ0, ω, Φ) ω 0

G*(γ0, ω, Φ) γ0 1 Complex shear modulus G* 006 γ0=10-3 γ0=10-3, ω=10-4 G : storage modulus close to ΦJ red Φ = 067 green Φ = 066 blue Φ = 065 G loss modulus frequency ω G 004 002 G ~ ΔΦ 1/2 0 064 065 066 067 Volume fraction Φ C O Hern, et al, Phys Rev Lett 88, 075507 (2002)

G * (γ0, ω, Φ) γ0 > 1 G * (γ0, ω, Φ) γ0 < 1 G * (γ0, ω, Φ) ω 0

G*(γ0, ω, Φ) ω 0 G0 (γ0, Φ) lim G (γ0, ω, Φ) ω 0 γc(φ) G0 G 0 = const γ0 < γc(φ) close to ΦJ red Φ = 0650, green Φ = 0652 blue Φ = 0655, magenta Φ = 0660 cyan : Φ = 0670 Shear amplitude : γ0 G 0 decreases as γ0 increases for γ0 > γc(φ) G 0 decreases as Φ approaches ΦJ

G*(γ0, ω, Φ) ω 0 G0 (γ0, Φ) = ΔΦ 1/2 h(γ0 / ΔΦ) lim h(x) x -1/2 x G ~ γ0-1/2 G ~ ΔΦ 1/2, for γ0 0 C O Hern, et al, Phys Rev Lett 88, 075507 (2002) G0 /ΔΦ 1/2 red Φ = 0650, green Φ = 0652 blue Φ = 0655, magenta Φ = 0660 cyan : Φ = 0670 γ0 / ΔΦ The yield strain γc is proportional to the contact length γc(φ) ~ ΔΦ B Tighe, et al, Phys Rev Lett 105, 088303 (2010) G0 is independent of Φ for ΔΦ 0

G*(γ0, ω, Φ) ω 0 G0 (γ0, Φ) = ΔΦ 1/2 h(γ0 / ΔΦ), lim h(x) x -1/2 x lim lim G0 (γ0, Φ) ΔΦ 1/2 ΔΦ 0 006 004 γ0 0 γ0=10-4 C O Hern, et al, Phys Rev Lett 88, 075507 (2002) G ~ ΔΦ 1/2 lim G0 (γ0, Φ) ΔΦ ΔΦ 0 006 004 cf TG Mason et al PRE (1997), experiments of emulsions H Yoshino, analysis of the replica method γ0=10-2 G ~ ΔΦ G0 G0 002 002 0 064 065 066 067 Volume fraction Φ 0 064 065 066 067 Volume fraction Φ

G*(γ0, ω, Φ) ω 0 G0 (γ0, Φ) = ΔΦ 1/2 h(γ0 / ΔΦ), lim h(x) x -1/2 x log G 0 C ( ) = 10-1 = 10-2 = 10-3 = 10-4 = 10-5 lim lim G0 (γ0, Φ) ΔΦ 1/2 γ0 0 ΔΦ 0 log 0 lim G0 (γ0, Φ) ΔΦ ΔΦ 0

G*(γ0, ω, Φ) ω 0 G0 (γ0, Φ) = ΔΦ 1/2 h(γ0 / ΔΦ), lim h(x) x -1/2 x lim lim G0 (γ0, Φ) ΔΦ 1/2 ΔΦ 0 006 004 γ0 0 γ0=10-4 C O Hern, et al, Phys Rev Lett 88, 075507 (2002) G ~ ΔΦ 1/2 lim G0 (γ0, Φ) ΔΦ ΔΦ 0 006 004 cf TG Mason et al PRE (1997), experiments of emulsions H Yoshino, analysis of the replica method γ0=10-2 G ~ ΔΦ G G 002 002 0 064 065 066 067 Volume fraction Φ 0 064 065 066 067 Volume fraction Φ

G*(ω, Φ) = ΔΦ g(ω / ΔΦ 5/2 ) G (Φ - ΦJ) 1/2, G ω G0 (γ0, Φ) = ΔΦ 1/2 h(γ0 / ΔΦ)

Model of granular materials Fn Ft Φ < ΦJ Φ > ΦJ Ft Normal force Fn Tangential force Friction coefficient : μ Fn = k δ Δ - η vn Ft < μ Fn (Coulomb s friction) Elastic part Dissipative part Δ = 1 (Disk) Frictionless : μ = 0 Δ = 3 / 2 (Sphere) Frictional : μ > 0 Important parameters : Δ, μ

Critical property (without shear) Frictionless case, Δ = 1 Φ < ΦJ Φ > ΦJ Shear modulus G ~ (Φ- ΦJ) 1/2 Pressure P ΦJ Viscosity η η ~ (ΦJ- Φ) -3 P ~ (Φ- ΦJ) ΦJ Φ - ΦJ

Critical scalings Shear stress σ Frictionless case, Δ = 1 σ(γ, Φ) / Φ - ΦJ β scaling plot Shear rate γ non-linear transport property For Φ < ΦJ, σ γ 2 (liquid) For Φ > ΦJ, σ const (solid) For Φ ΦJ, σ γ y γ γ Φ-ΦJ -α Hatano, 2008 σ(γ, Φ) = Φ - ΦJ β S±(γ Φ-ΦJ -α ) second order transition

Characteristic features Mean field theory Dimension D = 2, 3, 4 with the same exponents obtained from the theory The critical exponents depend on the type of the contact force Fn = k δ Δ The critical exponents are independent of the dimension M Otsuki and H Hayakawa, Phys Rev E, 80, 011308, (2009)

Effect of Friction σ σ Frictionless (μ = 00) Frictional (μ = 20) Hysteresis loop for frictional case M Otsuki and H Hayakawa, Phys Rev E 83, 051301 (2011)

Effect of friction (pressure in the zero shear limit) Pressure P Pressure P ΔP Frictionless (μ = 00) Continuous transition Frictional (μ = 20) Discontinuous transition

Effect of friction (type of the transition) 0005 ΔP 0004 0003 0002 ΔP 0001 0 0 05 1 15 2 Continuous transition Discontinuous transition Friction coefficient μ

Phase diagram P ~ (Φ- ΦS) Area of the hysteresis loop ΔP ΦC ΦS ΦS ΦC Many critical densities

An amount of the hysteresis loop phase diagram

Scaling relations Solid branch P ~ ( ) Δ, S ~ ( ) Δ,

Scaling relations liquid branch P ~ γ 2 ( ) -4, S ~ γ 2 ( ) -4

Granular rheology Shear stress : S 9 7 5 2 0 low density critical density high density 0 70 Shear rate γ2 Yield stress : SY low density S γ 2 critical density S γ y γ high density S SY Yield stress : SY (Φ - ΦJ) y Φ Bagnold law

Theory for exponents Assumption S / P is constant P in high density region : P ~ Φ Δ Δ-dependent critical exponents PTP, PRE (2009) Coulomb s friction : Hatano (2007) O Hern, et al, (2003) Characteristic time : P-1/2 Wyart, et al (2005) Low density region : collision frequency T 1/2 Kinetic theory normal force cf Hatano 2010, Teigh 2010 (yφ = Δ + 05)

Derivation of exponents γ 0, Φ > 0 Δ average force : Fc(Φ) k δ(φ) compression length δ(φ) Φ Fn=kδ Δ δ C S O Hern, et al (2003) Assumption : S/P is constant Coulomb s law

Two branches Solid branch Liquid branch different contact number contact number > 3 contact number < 2

Exponents in other works Author yφ yγ = α / yφ yφ xφ α system critical point shear rate Number of particles Olsson & Titel 2007 Hatano 2008 Otsuki, Hayakawa, 2009 Tighe et al 2010 Hatano 2010 Nordstrom et al 2010 Olsson & Titel 2010 12 = Δ+02 (Δ=1) 12 = Δ+02 (Δ=1) 0413 29 foam 063 (Δ=1) 12 = Δ+02 (Δ=1) 25 (Δ=1) 19 (Δ=1) granular Δ 2Δ / (Δ+4) Δ Δ+2 (Δ+4) / 2 granular Δ+05 1/2 foam 15 = Δ+05 (Δ=1) 21 = Δ+06 (Δ=15) 108 = Δ +008 (Δ=1) 06 (Δ=1) 048 (Δ=15) 028 (Δ=1) 15 = Δ+05 (Δ=1) 108 = Δ +008 (Δ=1) 33 (Δ=1) 25 (Δ=1) 41 (Δ=15) 385 (Δ=1) granular 08415 (diameters 1:14) 0646 (diameters 1:14) 0648 (diameters 1:14) 08423 (diameters 1:14) 06473 (diameters 1:14) foam 0635 foam 084347 (diameters 1:14) 1024 10-4 ~ 10 0 1000 5 x 10-7 ~ 5 x 10-5 4000 10-5 ~ 10-1 1210 10-8 ~ 10-2 4000 10-8 ~ 10-6

Correlation length ξ μ

Correlation function Cp(r) r

glass spheres in oil Sheared granular material Eric Brown, et al (2010) Hysteresis loop appears in this system [private communication] Related experiment

Granular rheology Shear stress : S 9 7 5 2 0 low density critical density high density 0 70 Shear rate γ2 Yield stress : SY low density S γ 2 critical density S γ y γ high density S SY Yield stress : SY (Φ - ΦJ) y Φ Bagnold law

Critical scaling γ : scaling plot Hatano, 2008

Theory for exponents Assumption S / P is constant P in high density region : P ~ Φ Δ Δ-dependent critical exponents PTP, PRE (2009) Coulomb s friction : Hatano (2007) O Hern, et al, (2003) Characteristic time : P-1/2 Wyart, et al (2005) Low density region : collision frequency T 1/2 Kinetic theory normal force cf Hatano 2010, Teigh 2010 (yφ = Δ + 05)

Derivation of exponents γ 0, Φ > 0 Δ average force : Fc(Φ) k δ(φ) compression length δ(φ) Φ Fn=kδ Δ δ C S O Hern, et al (2003) Assumption : S/P is constant Coulomb s law

Validity of the theory normal force yφ / α

Scaling law high density region( ) + low shear limit(γ 0) P ~ ( ) Δ, S ~ ( ) Δ low density region( ) + low shear limit(γ 0) P ~ γ 2 ( ) -4, S ~ γ 2 ( ) -4 ( ) -4 ( ) -4 P / γ 2 S / γ 2 low shear limit low shear limit

Protocol We sequentially change shear rate Shear rate Shear rate time time

Shear stress μ=00 μ=20 Similar behavior to the frictionless case γ critical density γ Hysteresis loop appears around the critical point

Scaling law frictionless high density region( ) + low shear limit(γ 0) P ~ ( ) Δ, S ~ ( ) Δ, low density region( ) + low shear limit(γ 0) P ~ γ 2 ( ) -4, S ~ γ 2 ( ) -4

Scaling laws frictional Solid branch liquid branch P ~ ( ) Δ, S ~ ( ) Δ, critical densities P ~ γ 2 ( ) -4, S ~ γ 2 ( ) -4 cf Somfai, et al (2007), Silbert (2010) [unsheared case]

Finite-size effect μ=12 μ=20 solid to liquid :N=8000 :N=16000 :N=32000 :N=8000 :N=16000 :N=32000 solid to liquid

Scaling in the liquid branch S ~ γ 2 ( ) -4 P ~ γ 2 ( ) -4, S / (A γ 2 ) P / (A γ 2 )

Scaling in the liquid branch S ~ γ 2 ( ) -4 P ~ γ 2 ( ) -4, S / (A γ 2 ) P / (A γ 2 )

Critical exponents

Model (frictionless grains) δ Δ=1(Linear model) Δ=3/2(Hertz model) Δ Interaction Force F=kδ Compressed Length δ The exponent for the interaction Δ Dissipative force between the contacting particles

Scaling function Scaling properties of S, T, P, ω jammed 1st eq

Pressure & shear stress For γ 0, Φ > 0 jammed phase Δ average force : Fc(Φ) k δ(φ) compressed length δ(φ) (σ/dφj)φ C S O Hern, et al (2003) Assumption S/P is independent of Φ Coulomb friction T Hatano (2007) 2nd eq 3rd eq

Characteristic frequency For γ 0, Φ > 0 jammed phase fc D(f) D(f) : Density of state f : frequency, fc : cut-off frequency,, Wyart et al (2005) f Assumption ω is scaled by fc For γ 0, Φ < 0 unjammed phase vc : characteristic velocity l (Φ) : mean free path 4th eq final eq 2 vc T/m l (Φ) (σ/dφj) Φ

Critical exponents The exponents depend on Δ

Previous works Our theory : The results are consistent with Previous works : our prediction 2-dimensional elastic particles R Garcia-Rojo, et al, PRE (2006) 3-dimensional elastic particles Singular behavior around Φ = ΦG < ΦJ L Berthier and T A Witten, EPL (2009)

Pair correlation functions Structure factor Pair correlations The first peak exceeds the maximum value of this graph D=3, mono-disperse, Δ=1 S(k) does not show any critical behaviors The first peak of g(r) changes drastically near ΦJ

Divergence of the first peak small shear magnification σ0 The first peak diverges as the shear rate gets smaller

Scaling of the first peak coordination number : Z Pressure : P The results are consistent with our predictions dilute g(r) have peak g0 around r=σ0 dense D=3, mono-disperse,δ=1

There is no singularity other than point J

ΦJ for static granular packing Stress control simulation φj1 is related with φj Silbert, et al (2001) Ciamarra, et al (2010) φj2 is related with φl Discussion : previous works