Exponentiated Kumaraswamy-Dagum distribution with applications to income and lifetime data

Similar documents
Marshall-Olkin Log-Logistic Extended Weibull Distribution : Theory, Properties and Applications

Parameters Estimation of the Modified Weibull Distribution Based on Type I Censored Samples

Computing MLE Bias Empirically

Statistical Properties of the Mc-Dagum and Related Distributions

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Statistical inference for generalized Pareto distribution based on progressive Type-II censored data with random removals

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Chapter 11: Simple Linear Regression and Correlation

The Order Relation and Trace Inequalities for. Hermitian Operators

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

Interval Estimation of Stress-Strength Reliability for a General Exponential Form Distribution with Different Unknown Parameters

Double Acceptance Sampling Plan for Time Truncated Life Tests Based on Transmuted Generalized Inverse Weibull Distribution

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

/ n ) are compared. The logic is: if the two

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T.

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

STAT 3008 Applied Regression Analysis

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

Composite Hypotheses testing

Lecture 6 More on Complete Randomized Block Design (RBD)

ASYMPTOTIC PROPERTIES OF ESTIMATES FOR THE PARAMETERS IN THE LOGISTIC REGRESSION MODEL

Chapter 13: Multiple Regression

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Economics 130. Lecture 4 Simple Linear Regression Continued

An (almost) unbiased estimator for the S-Gini index

Estimation of the Mean of Truncated Exponential Distribution

Which estimator of the dispersion parameter for the Gamma family generalized linear models is to be chosen?

Statistics II Final Exam 26/6/18

Dagum Distribution: Properties and Different Methods of Estimation

x i1 =1 for all i (the constant ).

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

First Year Examination Department of Statistics, University of Florida

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Linear Regression Analysis: Terminology and Notation

On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

A Note on Bound for Jensen-Shannon Divergence by Jeffreys

New Extended Weibull Distribution

NUMERICAL DIFFERENTIATION

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

Maximum Likelihood Estimation of Lorenz Curves using Alternative Parametric Model

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

The Exponentiated-Log-logistic Geometric Distribution: Dual Activation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

A Generalization of the Weibull Distribution with Applications

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

The RS Generalized Lambda Distribution Based Calibration Model

a. (All your answers should be in the letter!

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Statistics Chapter 4

Statistics for Economics & Business

On the Transmuted Additive Weibull Distribution

CS-433: Simulation and Modeling Modeling and Probability Review

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

Small Area Interval Estimation

STATISTICS QUESTIONS. Step by Step Solutions.

Comparison of Regression Lines

A Comparative Study for Estimation Parameters in Panel Data Model

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

Chapter 5 Multilevel Models

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistics for Business and Economics

STAT 511 FINAL EXAM NAME Spring 2001

DERIVATION OF THE PROBABILITY PLOT CORRELATION COEFFICIENT TEST STATISTICS FOR THE GENERALIZED LOGISTIC DISTRIBUTION

Chapter 20 Duration Analysis

Non-Mixture Cure Model for Interval Censored Data: Simulation Study ABSTRACT

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Lecture 6: Introduction to Linear Regression

4.3 Poisson Regression

Chapter 8 Indicator Variables

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2

RELIABILITY ASSESSMENT

Modeling and Simulation NETW 707

ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE

Goodness of fit and Wilks theorem

Chapter 14 Simple Linear Regression

Linear Approximation with Regularization and Moving Least Squares

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Negative Binomial Regression

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Chapter 3 Describing Data Using Numerical Measures

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Conjugacy and the Exponential Family

Research Article Green s Theorem for Sign Data

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

Basic Statistical Analysis and Yield Calculations

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

More metrics on cartesian products

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Transcription:

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 RESEARCH Open Access Exponentated Kumaraswamy-Dagum dstrbuton wth applcatons to ncome and lfetme data Shujao Huang and Broderck O Oluyede * *Correspondence: boluyede@georgasouthern.edu Department of Mathematcal Scences Georga Southern Unversty Statesboro GA 30458 USA Abstract A new famly of dstrbutons called exponentated Kumaraswamy-Dagum (EKD) dstrbuton s proposed and studed. Ths famly ncludes several well known sub-models such as Dagum (D) Burr III (BIII) Fsk or Log-logstc (F or LLog) and new sub-models namely Kumaraswamy-Dagum (KD) Kumaraswamy-Burr III (KBIII) Kumaraswamy-Fsk or Kumaraswamy-Log-logstc (KF or KLLog) exponentated Kumaraswamy-Burr III (EKBIII) and exponentated Kumaraswamy-Fsk or exponentated Kumaraswamy-Log-logstc (EKF or EKLLog) dstrbutons. Statstcal propertes ncludng seres representaton of the probablty densty functon hazard and reverse hazard functons moments mean and medan devatons relablty Bonferron and Lorenz curves as well as entropy measures for ths class of dstrbutons and the sub-models are presented. Maxmum lkelhood estmates of the model parameters are obtaned. Smulaton studes are conducted. Examples and applcatons as well as comparsons of the EKD and ts sub-dstrbutons wth other dstrbutons are gven. Mathematcs Subject Classfcaton (2000): 62E10; 62F30 Keywords: Dagum dstrbuton; Exponentated Kumaraswamy-Dagum dstrbuton; Maxmum lkelhood estmaton 1 Introducton Camlo Dagum proposed the dstrbuton whch s referred to as Dagum dstrbuton n 1977. Ths proposal enable the development of statstcal dstrbutons used to ft emprcal ncome and wealth data that could accommodate heavy tals n ncome and wealth dstrbutons. Dagum s proposed dstrbuton has both Type-I and Type-II specfcaton where Type-I s the three parameter specfcaton and Type-II deals wth four parameter specfcaton. Ths dstrbuton s a specal case of generalzed beta dstrbuton of the second knd (GB2) McDonald (1984) McDonald and Xu (1995) when the parameter q = 1 where the probablty densty functon (pdf) of the GB2 dstrbuton s gven by: ay ap 1 f GB2 (y; a b p q) = b ap B(p q)[1 + ( y ) a fory > 0. b ] p+q See Kleber and Kotz (2003) for detals. Note that a > 0 p > 0 q > 0 are the shape parameters and b s the scale parameter and B(p q) = Ɣ(p)Ɣ(q) Ɣ(p+q) s the beta functon. Kleber (2008) traced the geness of Dagum dstrbuton and summarzed several 2014 Huang and Oluyede; lcensee Sprnger. Ths s an Open Access artcle dstrbuted under the terms of the Creatve Commons Attrbuton Lcense (http://creatvecommons.org/lcenses/by/2.0) whch permts unrestrcted use dstrbuton and reproducton n any medum provded the orgnal work s properly credted.

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 2 of 20 statstcal propertes of ths dstrbuton. Domma et al. (2011) obtaned the maxmum lkelhood estmates of the parameters of Dagum dstrbuton for censored data. Domma and Condno (2013) presented the beta-dagum dstrbuton. Cordero et al. (2013) proposed the beta exponentated Webull dstrbuton. Cordero et al. (2010) ntroduced and studed some mathematcal propertes of the Kumaraswamy Webull dstrbuton. Oluyede and Rajasoorya (2013) developed the Mc-Dagum dstrbuton and presented ts statstcal propertes. See references theren for addtonal results. The pdf and cumulatve dstrbuton functon (cdf) of Dagum dstrbuton are gven by: g D (x; λ β δ) = βλδx δ 1 ( ) β 1 (1) and G D (x; λ β δ) = ( ) β (2) for x > 0 where λ s a scale parameter δ and β are shape parameters. Dagum (1977) refers to hs model as the generalzed logstc-burr dstrbuton. The k th raw or non central moments are gven by E (X k) ( = βλ k δ B β + k δ 1 k ) δ for k <δandλ β>0 where B( ) s the beta functon. The q th percentle s x q = λ 1 δ ( q 1 β 1) 1 δ. In ths paper we present generalzatons of the Dagum dstrbuton va Kumaraswamy dstrbuton and ts exponentated verson. Ths leads to the exponentated Kumaraswamy Dagum dstrbuton. The motvaton for the development of ths dstrbuton s the modelng of sze dstrbuton of personal ncome and lfetme data wth a dverse model that takes nto consderaton not only shape and scale but also skewness kurtoss and tal varaton. Also the EKD dstrbuton and ts sub-models has desrable features of exhbtng a non-monotone falure rate thereby accommodatng dfferent shapes for the hazard rate functon and should be an attractve choce for survval and relablty data analyss. Ths paper s organzed as follows. In secton 3 we present the exponentated Kumaraswamy-Dagum dstrbuton and ts sub models as well as seres expanson hazard and reverse hazard functons. Moments moment generatng functon Lorenz and Bonferron curves mean and medan devatons and relablty are obtaned n secton 4. Secton 5 contans results on the dstrbuton of the order statstcs and Reny entropy. Estmaton of model parameters va the method of maxmum lkelhood s presented n secton 6. In secton 7 varous smulatons are conducted for dfferent sample szes. Secton 8 contans examples and applcatons of the EKD dstrbuton and ts sub-models followed by concludng remarks. 2 Methods results and dscussons Methods results and dscussons for the class of EKD dstrbutons are presented n sectons 3 to 8. These sectons nclude the sub-models seres expanson of the pdf closed form expressons for the hazard and reverse hazard functons moments moment generatng functon Bonferron and Lorenz curves relablty mean and medan devatons

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 3 of 20 dstrbuton of order statstcs and entropy as well as estmaton of model parameters and applcatons. 3 The exponentated Kumaraswamy-Dagum dstrbuton In ths secton we present the proposed dstrbuton and ts sub-models. Seres expanson hazard and reverse hazard functons are also studed n ths secton. 3.1 Kumaraswamy-Dagum dstrbuton Kumaraswamy (1980) ntroduced a two-parameter dstrbuton on (0 1). Itscdfsgven by G(x) = ( x ψ) φ x (0 1) for ψ>0andφ>0. For an arbtrary cdf F(x) wth pdf f (x) = df(x) dx the famly of Kumaraswamy-G dstrbutons wth cdf G k (x) s gven by G K (x) = ( F ψ (x) ) φ for ψ>0andφ>0. By lettng F(x) = G D (x) we obtan the Kumaraswamy-Dagum (KD) dstrbuton wth cdf ( ) G KD (x) = G ψ φ D (x). 3.2 The EKD dstrbuton In general the EKD dstrbuton s G EKD (x) = [F KD (x)] θ wheref KD (x) s a baselne (Kum-Dagum) cdf θ > 0 wth the correspondng pdf gven by g EKD (x) = θ[f KD (x)] θ 1 f KD (x). For large values of x andforθ>1(< 1) the multplcatve factor θ[f KD (x)] θ 1 > 1(< 1) respectvely. The reverse statement holds for smaller values of x. Consequently ths mples that the ordnary moments of g EKD (x) are larger (smaller) than those of f KD (x) when θ>1(< 1). Replacng the dependent parameter βψ by α the cdf and pdf of the EKD dstrbuton are gven by G EKD (x; α λ δ φ θ) = { ) α ] } φ θ (3) and g EKD (x; α λ δ φ θ) = αλδφθx δ 1 ( ) α 1 [ ( ) α ] φ 1 { ) α ] } φ θ 1 (4) for α λ δ φ θ>0 and x > 0 respectvely. The quantle functon of the EKD dstrbuton s n closed form [ ( ) G 1 (q) = x EKD q = λ 1 δ q θ 1 1 ] 1 α φ 1 1 δ. (5) Plots of the pdf for some combnatons of values of the model parameters are gven n Fgure 1. The plots ndcate that the EKD pdf can be decreasng or rght skewed. The EKD dstrbuton has a postve asymmetry.

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 4 of 20 Fgure 1 Graph of pdfs. 3.3 Some sub-models Sub-models of EKD dstrbuton for selected values of the parameters are presented n ths secton. 1. When θ = 1 we obtan Kumaraswamy-Dagum dstrbuton wth cdf: [ G(x; α λ δ φ) = ( ) α ] φ for α λ δ φ>0 and x > 0. 2. When φ = θ = 1 we obtan Dagum dstrbuton wth cdf: G(x; α λ δ) = ( ) α for α λ δ>0 and x > 0. 3. When λ = 1 we obtan exponentated Kumaraswamy-Burr III dstrbuton wth cdf: G(x; α δ φ θ) = { 1 + x δ) α ] } φ θ for α δ φ θ>0and x > 0. 4. When λ = θ = 1 we obtan Kumaraswamy-Burr III dstrbuton wth cdf: [ G(x; α δ φ) = ( 1 + x δ) α ] φ for α δ φ>0 and x > 0. 5. When λ = φ = θ = 1 we obtan Burr III dstrbuton wth cdf: G(x; α δ) = ( 1 + x δ) α for α δ>0and x > 0. 6. When α = 1 we obtan exponentated Kumaraswamy-Fsk or Kumaraswamy-Log-logstc dstrbuton wth cdf: { G(x; λ δ φ θ) = ) 1 ] } φ θ for λ δ φ θ>0 and x > 0.

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 5 of 20 7. When α = θ = 1 we obtan Kumaraswamy-Fsk or Kumaraswamy-Log-logstc dstrbuton wth cdf: [ G(x; λ δ φ) = ( ) 1 ] φ for λ δ φ>0 and x > 0. 8. When α = φ = θ = 1 we obtan Fsk or Log-logstc dstrbuton wth cdf: G(x; λ δ) = ( ) 1 for λ δ>0 and x > 0. 3.4 Seres expanson of EKD dstrbuton We apply the seres expanson ( z) b 1 = j=0 ( 1) j Ɣ(b) Ɣ(b j)j! zj (6) for b > 0and z < 1 to obtan the seres expanson of the EKD dstrbuton. By usng equaton (6) g EKD (x) = =0 j=0 ω( j)x δ 1 ( ) α(j+1) 1 (7) where ω( j) = αλδφθ ( 1)+j Ɣ(θ)Ɣ(φ+φ) Ɣ(θ )Ɣ(φ+φ j)!j!. Note that n the Dagum(α δ λ) dstrbuton α and δ are shape parameters and λ s a scale parameter. In the Exponentated-Kumaraswamy(ψ φ θ) dstrbuton ψ s a skewness parameter φ s a tal varaton parameter and the parameter θ characterzes the skewness kurtoss and tal of the dstrbuton. Consequently for the EKD(α λ δ φ θ) dstrbuton α s shape and skewness parameter δ s shape parameter λ s a scale parameter φ s a tal varaton parameter and the parameter θ characterzes the skewness kurtoss and tal of the dstrbuton. 3.5 Hazard and reverse hazard functon The hazard functon of the EKD dstrbuton s h EKD (x) = g (x) EKD G EKD (x) = αλδφθx δ 1 ( ) α 1 [ ( ) α ] φ 1 [ {1 ( ) α ] φ } θ 1 ( { ) α ] } ) φ θ 1. (8) Plots of the hazard functon are presented n Fgure 2. The plots show varous shapes ncludng monotoncally decreasng unmodal and bathtub followed by upsde down bathtub shapes wth fve combnatons of the values of the parameters. Ths attractve flexblty makes the EKD hazard rate functon useful and sutable for non-monotone emprcal hazard behavors whch are more lkely to be encountered or observed n real lfe stuatons. Unfortunately the analytcal analyss of the shape of both the densty (except for zero modal when αδ 1 and unmodal f αδ > 1 both for φ = θ = 1) and

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 6 of 20 Fgure 2 Graphs of hazard functons. hazard rate functon seems to be very complcated. We could not determne any specfc rules for the shapes of the hazard rate functon. The reverse hazard functon of the EKD dstrbuton s τ EKD (x) = g EKD (x) G EKD (x) = αλδφθx δ 1 ( ) α 1 [ ( ) α ] φ 1 { ) α ] } φ 1. (9) 4 Moments moment generatng functon Bonferron and Lorenz curves mean and medan devatons and relablty In ths secton we present the moments moment generatng functon Bonferron and Lorenz curves mean and medan devatons as well as the relablty of the EKD dstrbuton. The moments of the sub-models can be readly obtaned from the general results. 4.1 Moments and moment generatng functon Let t = ( ) 1 n equaton (7) then the s th raw moment of the EKD dstrbuton s gven by E(X s ) = = = 0 =0 j=0 =0 j=0 x s g EKD (x)dx ω( j)λ δ s 1 1 ( δ B α(j + 1) + s δ 1 s ) δ ( ω( j s)b α(j + 1) + s δ 1 s ) δ (10) where ω( j s) = αλ δ s φθ ( 1)+j Ɣ(θ)Ɣ(φ+φ) Ɣ(θ )Ɣ(φ+φ j)!j! ands <δ.

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 7 of 20 The moment generatng functon of the EKD dstrbuton s gven by ( M(t) = ω( j r) tr r! B α(j + 1) + r δ 1 r ) δ for r <δ. r=0 =0 j=0 4.2 Bonferron and Lorenz curves Bonferron and Lorenz curves are wdely used tool for analyzng and vsualzng ncome nequalty. Lorenz curve L(p) can be regarded as the proporton of total ncome volume accumulated bythoseunts wth ncome lower than or equal to the volume a and Bonferron curve B(p) s the scaled condtonal mean curve that s rato of group mean ncome of the populaton. Plots of Bonferron and Lorenz curves are gven n Fgure 3. Let I(a) = a 0 x g EKD (x)dx and μ = E(X) then Bonferron and Lorenz curves are gven by B(p) = I(q) I(q) and L(p) = pμ μ respectvely for 0 p 1 and q = G 1 EKD (p). The mean of the EKD dstrbuton s obtaned from equaton (10) wth s = 1 and the quantle functon s gven n equaton (5). Consequently ( I(a) = ω( j1)b t(a) α(j + 1) + 1 δ 1 1 ) (11) δ =0 j=0 for δ > 1 where t(a) = (1 + λa δ ) 1 andb G(x) (c d) = G(x) 0 t c 1 ( t) d 1 dt for G(x) < 1 s ncomplete Beta functon. 4.3 Mean and medan devatons If X has the EKD dstrbuton we can derve the mean devaton about the mean μ = E(X) and the medan devaton about the medan M from δ 1 = x μ g EKD (x)dx and δ 2 = x M g EKD (x)dx 0 respectvely. The mean μ s obtaned from equaton (10) wth s = 1 and the medan M s gvenbyequaton(5)whenq = 1 2. 0 Fgure 3 Graphs of Bonferron and Lorenz curves.

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 8 of 20 The measure δ 1 and δ 2 can be calculated by the followng relatonshps: δ 1 = 2μ G EKD (μ) 2μ + 2T(μ) and δ 2 = 2T(M) μ where T(a) = a x g EKD (x)dx follows from equaton (11) that s T(a) = ω( j1) B α(j + 1) + 1 δ 1 1 δ =0 j=0 ) B t(a) ( α(j + 1) + 1 δ 1 1 δ 4.4 Relablty The relablty R = P(X 1 > X 2 ) when X 1 and X 2 have ndependent EKD(α 1 λ 1 δ 1 φ 1 θ 1 ) and EKD(α 2 λ 2 δ 2 φ 2 θ 2 ) dstrbutons s gven by R = = 0 g 1 (x)g 2 (x)dx ζ( j k l) =0 j=0 k=0 l=0 0 )]. x δ 1 1 ( 1 + λ 1 x δ 1 ) α 1 (j+1) 1 ( 1 + λ2 x δ 2 ) α 2 l dx ( 1) +j+k+l Ɣ(θ 1 )Ɣ(φ 1 +φ 1 )Ɣ(θ 2 +1)Ɣ(φ 2 k+1) Ɣ(θ )Ɣ(φ 1 +φ j)ɣ(θ 2 +1 k)ɣ(φ 2 k+1 l)!j!k!l!. where ζ( j k l) = α 1 λ 1 δ 1 φ 1 θ 1 If λ = λ 1 = λ 2 and δ = δ 1 = δ 2 then relablty can be reduced to ζ( j k l) R = λδ[α 1 (j + 1) + α 2 l]. j=1 k=1 l=1 5 Order statstcs and entropy In ths secton the dstrbuton of the k th order statstc and Reny entropy (Reny 1960) for the EKD dstrbuton are presented. The entropy of a random varable s a measure of varaton of the uncertanty. 5.1 Order statstcs The pdf of the k th order statstcs from a pdf f (x) s f (x) f k:n (x) = B(k n k + 1) Fk 1 (x)[ F(x)] n k ( ) n = k f (x)f k 1 (x)[ F(x)] n k. (12) k Usng equaton (6) the pdf of the k th order statstc from EKD dstrbuton s gven by g k:n (x) = K( j p k) x δ 1 ( ) α αp 1 =0 j=0 p=0 where K( j p k) = 5.2 Entropy ( 1)+j+p Ɣ(n k+1)ɣ(θk+θ)ɣ(φj+φ) Ɣ(n k+1 )Ɣ(θk+θ j)ɣ(φj+φ p)!j!p! k( n k) αλδφθ. Reny entropy of a dstrbuton wth pdf f (x) s defned as { } I R (τ) = ( τ) 1 log f τ (x)dx τ>0 τ = 1. R Usng equaton (6) Reny entropy of EKD dstrbuton s gven by I R (τ) = ( τ) 1 log ( 1) +j Ɣ(θτ τ + 1)Ɣ(φτ τ + φ + 1) Ɣ(θτ τ + )Ɣ(φτ τ + φ + j)! j! =0 j=0 ( α τ λ τ δ + 1 δ δ τ 1 φ τ θ τ B ατ + αj + τ τ + τ 1 δ δ ) ]. for ατ + αj + 1 τ δ obtaned. > 0andτ + τ 1 δ > 0. Reny entropy for the sub-models can be readly

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 9 of 20 6 Estmaton of model parameters In ths secton we present estmates of the parameters of the EKD dstrbuton va method of maxmum lkelhood estmaton. The elements of the score functon are presented. There are no closed form solutons to the nonlnear equatons obtaned by settng the elements of the score functon to zero. Thus the estmates of the model parameters must be obtaned va numercal methods. 6.1 Maxmum lkelhood estmaton Let x = (x 1 x n ) T be a random sample of the EKD dstrbuton wth unknown parameter vector = (α λ δ φ θ) T. The log-lkelhood functon for s n l( ) = n (ln α + ln λ + ln δ + ln φ + ln θ) (δ + 1) ln x (α + 1) + (θ 1) n ( ln { n ln ) + (φ 1) n ln ) ] } α φ [ ( ) α ]. (13) The partal dervatves of l( ) wth respect to the parameters are ( ) α ( ) l α = n n ( ) n α ln ln + (φ 1) ( ) α ) ] α φ 1 ( ) α ( ) n ln (θ 1)φ ) ] α φ l λ = n n λ (α + 1) (θ 1)φα n x δ + (φ 1)α ( ) α 1 n x δ ( ) α ) ] α φ 1 ( ) α 1 x δ ) ] α φ l δ = n n n δ x δ ln x ln x + (α + 1)λ ( ) α 1 n x δ ln x (φ 1)αλ ( ) α n + (θ 1)φαλ l φ = n n φ + and ln 1+λx δ ) α ] (θ 1) { l θ = n n θ + ln ) α ] φ 1 ( n ) α 1 x δ ln x ) ] α φ ) ] α φ ln ) ] } α φ ) α ] ) ] α φ

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 10 of 20 respectvely. The MLE of the parameters α λ δ φ andθ say ˆα ˆλ ˆδ ˆφ and ˆθ mustbe obtaned by numercal methods. 6.2 Asymptotc confdence ntervals In ths secton we present the asymptotc confdence ntervals for the parameters of the EKD dstrbuton. The expectatons n the Fsher Informaton Matrx (FIM) can be obtaned numercally. Let ˆ = ( ˆα ˆλ ˆδ ˆφ ˆθ) be the maxmum lkelhood estmate of = (α λ δ φ θ). Under the usual regularty condtons and that the parameters are n the nteror of the parameter space but not on the boundary we have: d n( ˆ ) N 5 (0 I 1 ( )) wherei( ) s the expected Fsher nformaton matrx. The asymptotc behavor s stll vald f I( ) s replaced by the observed nformaton matrx evaluated at ˆ thatsj( ˆ ). The multvarate normal dstrbuton N 5 (0 J( ˆ ) 1) where the mean vector 0 = (0 0 0 0 0) T can be used to construct confdence ntervals and confdence regons for the ndvdual model parameters and for the survval and hazard rate functons. The approxmate 100( η)% two-sded confdence ntervals for α λ δ φ and θ are gven by: α ± Z η Iαα 1 ( ) 2 λ ± Z η I 1 2 λλ ( ) δ ± Z η I 1 2 δδ ( ) φ ± Z η I 1 2 φφ ( ) θ ± Z η I 1 2 θθ ( ) respectvely where Z η s the upper η th 2 2 percentle of a standard normal dstrbuton. We can use the lkelhood rato (LR) test to compare the ft of the EKD dstrbuton wth ts sub-models for a gven data set. For example to test θ = 1 the LR statstc s ( )) ( ( ))] ω = 2 ln L ˆα ˆλ ˆδ ˆφ ˆθ ln L α λ δ φ 1 where ˆα ˆλ ˆδ ˆφ and ˆθ are the unrestrcted estmates and α λ δ and φ are the restrcted estmates.thelrtestrejectsthenullhypothessfω>χ 2whereχ2 denote the upper d d 100d% pont of the χ 2 dstrbuton wth 1 degrees of freedom. 7 Smulaton study In ths secton we examne the performance of the EKD dstrbuton by conductng varous smulatons for dfferent szes (n=200 400 800 1200) va the subroutne NLP n SAS. We smulate 2000 samples for the true parameters values I : α = 2 λ = 1 δ = 3 φ = 2 θ = 2andII : α = 1 λ = 1 δ = 1 φ = 1 θ = 1. Table 1 lsts the means MLEs of the fve model parameters along wth the respectve root mean squared errors (RMSE). From the results we can verfy that as the sample sze n ncreases the mean estmates of the parameters tend to be closer to the true parameter values snce RMSEs decay toward zero. 8 Applcaton: EKD and sub-dstrbutons In ths secton applcatons based on real data as well as comparson of the EKD dstrbuton wth ts sub-models are presented. We provde examples to llustrate the flexblty of the EKD dstrbuton n contrast to other models ncludng the exponentated

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 11 of 20 Table 1 Monte Carlo smulaton results: mean estmates and RMSEs I II n Parameter Mean RMSE Mean RMSE 200 α 4.41621 3.979304324 1.7899006 1.992043574 λ 1.3580866 2.642335804 1.4287071 1.528578784 δ 3.1167852 2.601663026 1.0337146 0.5898521 φ 5.7270324 6.535452517 2.4702434 3.712081559 θ 4.5560563 4.306946865 2.8884959 3.689669972 400 α 3.5972873 3.071770841 1.5456974 1.513782811 λ 1.1196079 0.900800533 1.1382897 0.732002869 δ 2.9333424 1.821450521 1.0064105 0.377302664 φ 4.6989703 5.277876069 1.5488732 1.872088246 θ 4.1188983 3.616692978 2.4213684 2.969367761 800 α 3.1040595 2.417025941 1.4359333 1.278449373 λ 1.0626388 0.609066006 1.0432761 0.346996974 δ 2.8960167 1.36814261 1.0017278 0.250650155 φ 3.7437056 3.919777583 1.176675 0.766203302 θ 3.4890255 2.748229594 1.9733522 2.197844717 1200 α 2.8399564 2.058703427 1.3884174 1.169251427 λ 1.0429655 0.501712467 1.021836 0.258884917 δ 2.9152476 1.133666485 1.0014919 0.193825437 φ 3.1751818 3.043071803 1.083574 0.392293513 θ 3.164176 2.346236284 1.731924 1.788360814 Kumaraswamy-Webull (EKW) and beta-kumaraswamy-webull (BKW) dstrbutons for data modelng. The pdfs of EKW and BKW dstrbutons are [ f EKW (x) = θabcλ c x c 1 e (λx)c e (λx)c] a 1 { [ e (λx)c] a} b 1 [ { [ e (λx)c] ] a} b θ 1 and f BKW (x) = 1 B(a b) αβcλc x c 1 e (λx)c [ e (λx)c] α 1 { [ e (λx)c] α} βb 1 [ { [ e (λx)c] ] α} β a 1 respectvely. The frst data set conssts of the number of successve falures for the ar condtonng system of each member n a fleet of 13 Boeng 720 jet arplanes (Proschan 1963). The data s presented n Table 2. The second data set conssts of the salares of 818 professonal baseball players for the year 2009 (USA TODAY). The thrd data set represents the poverty rate of 533 dstrcts wth more than 15000 students n 2009 (Dgest of Educaton Statstcs http://nces.ed.gov/programs/dgest/ d11/tables/dt11_096.asp ). These data sets are modeled by the EKD dstrbuton and compared wth the correspondng sub-models the Kumaraswamy-Dagum and Dagum

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 12 of 20 Table 2 Ar condtonng system data 194 413 90 74 55 23 97 50 359 50 130 487 57 102 15 14 10 57 320 261 51 44 9 254 493 33 18 209 41 58 60 48 56 87 11 102 12 5 14 14 29 37 186 29 104 7 4 72 270 283 7 61 100 61 502 220 120 141 22 603 35 98 54 100 11 181 65 49 12 239 14 18 39 3 12 5 32 9 438 43 134 184 20 386 182 71 80 188 230 152 5 36 79 59 33 246 1 79 3 27 201 84 27 156 21 16 88 130 14 118 44 15 42 106 46 230 26 59 153 104 20 206 5 66 34 29 26 35 5 82 31 118 326 12 54 36 34 18 25 120 31 22 18 216 139 67 310 3 46 210 57 76 14 111 97 62 39 30 7 44 11 63 23 22 23 14 18 13 34 16 18 130 90 163 208 1 24 70 16 101 52 208 95 62 11 191 14 71 dstrbutons and as well as EKW BKW dstrbutons. Table 3 gves a descrptve summary of each sample. The ar condtonng system sample has far more varablty and the baseball player salary sample has the lowest varablty. The maxmum lkelhood estmates (MLEs) of the parameters are computed by maxmzng the objectve functon va the subroutne NLMIXED n SAS. The estmated values of the parameters (standard error n parenthess) -2 Log-lkelhood statstc Akake Informaton Crteron AIC = 2p 2ln(L) Bayesan Informaton Crteron BIC = p ln(n) 2ln(L) and Consstent Akake Informaton Crteron AICC = AIC + 2 p(p+1) n p 1 where L = L( ˆ ) s the value of the lkelhood functon evaluated at the parameter estmates n s the number of observatons and p s the number of estmated parameters for the EKD dstrbuton and ts sub-dstrbutons are tabulated. See Table 4 Table 5 and Table 6. Plots of the ftted EKD KD D and the hstogram of the data are gven n Fgure 4. The probablty plots (Chambers et al. 1983) conssts of plots of the observed probabltes aganst the probabltes predcted by the ftted model are also presented n Fgure 5. For the EKD dstrbuton we plotted for example { G(x (j) ) = 1 + ˆλx ˆδ (j) ) ˆα ] ˆφ } ˆθ aganst j 0.375 n+0.25 j = 1 2... n wherex (j) are the ordered values of the observed data. A measure of closeness of the plot to the dagonal lne gven by the sum of squares SS = n j=1 [ G(x (j) ) ( j 0.375 n + 0.25 )] 2 Table 3 Descrptve statstcs Data Mean Medan Mode SD Varance Skewness Kurtoss Mn. Max. I 92.07 54.00 14.00 107.92 11646 2.16 5.19 1.0 603.0 II 3.26 1.15 0.40 4.36 19.05 2.10 5.13 0.4 33.0 III 17.71 16.80 9.30 8.80 77.38 0.80 0.73 2.7 53.6

Table 4 Estmaton of models for ar condtonng system data Estmates Statstcs Dstrbuton α λ δ φ θ -2 log lkelhood AIC AICC BIC SS EKD 20.6164 4.7323 0.6192 18.1616 0.1657 2065.0 2075.0 2075.3 2091.2 0.0309 (1.2347) (0.4174) (0.0459) (5.8028) (0.0089) KD 5.0354 4.3846 0.3762 21.7047 1 2066.9 2074.9 2075.2 2087.9 0.0368 (2.1177) (3.0727) (0.1253) (27.9167) - D 1.2390 94.1526 1.2626 1 1 2078.4 2084.4 2084.5 2094.1 0.1344 (0.1749) (33.7549) (0.0663) - - a b c λ θ EKW 3.7234 0.1219 1.0595 0.0495 0.3784 2063.7 2073.7 2074.0 2089.8 0.0254 (0.8783) (0.0183) (0.1448) (0.0224) (0.1136) a b α β c λ BKW 1.4342 0.0830 2.0054 1.9100 0.7412 0.1809 2064.6 2076.6 2077.1 2096.1 0.0338 (1.2507) (0.0875) (1.6573) (1.9807) (0.0343) (0.0388) Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 13 of 20

Table 5 Estmaton of models for baseball player salary data Estmates Statstcs Dstrbuton α λ δ φ θ -2 log lkelhood AIC AICC BIC SS EKD 69.1586 0.000043 7.6321 0.0591 0.4075 2864.1 2874.1 2874.2 2897.7 7.8153 (0.000036) (0.0000058) (0.0557) (0.0044) (0.0327) KD 69.0839 0.000011 7.2375 0.0996 1 2957.2 2965.2 2965.2 2984.0 7.7095 (0.000061) (0.00000133) (0.037) (0.0036) - D 70.0780 0.0116 1.0312 1 1 3225.6 3231.6 3231.6 3245.7 6.4568 (34.4988) (0.0058) (0.0301) - - a b c λ θ EKW 15.0514 0.1368 0.6376 8.8903 0.5419 3209.8 3219.8 3219.9 3243.3 5.3289 (2.0692) (0.0266) (0.0756) (4.9198) (0.2098) a b α β c λ BKW 24.0047 0.03783 14.4799 4.6029 0.5168 32.1184 3088.4 3100.4 3100.5 3128.7 18.0516 (0.6879) (0.0039) (0.2069) (0.4549) (0.006) (2.4559) Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 14 of 20

Table 6 Estmaton of models for poverty rate data Estmates Statstcs Dstrbuton α λ δ φ θ -2 log lkelhood AIC AICC BIC SS EKD 75.5803 0.851500 0.8183 60.9069 0.3091 3750.7 3760.7 3760.8 3782.1 0.1305 (11.1276) (0.32) (0.0714) (29.1324) (0.02229) KD 60.8898 0.304000 0.4666 90.2889 1 3758.9 3766.9 3767.0 3784.0 0.2604 (17.5714) (0.0963) (0.0555) (54.8283) - D 1.7954 350.0100 2.4175 1 1 3831.8 3837.8 3837.9 3850.7 0.9210 (0.2034) (105.94) (0.0784) - - a b c λ θ EKW 0.1013 2.2289 2.741 0.02545 20.0336 3752.8 3762.8 3762.9 3784.2 0.1071 (0.0944) (1.8026) (2.2276) (0.0199) (30.0233) a b α β c λ BKW 0.9985 1.0006 1.9999 0.03989 2.0006 0.1141 4727.5 4739.5 4739.7 4765.2 80.9942 (0.0069) (0.0431) (0.0584) (0.0017) (0.2564) (0.0075) Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 15 of 20

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 16 of 20 Fgure 4 Ftted PDF for data sets. was calculated for each plot. The plot wth the smallest SS corresponds to the model wth ponts that are closer to the dagonal lne. Plots of the emprcal and estmated survval functons for the models are also presented n Fgure 6. For the ar condtonng system data ntal values α = 1 λ = 2 δ = 0.6 φ = 3 θ = 1 are used n SAS code for EKD model. The LR statstcs for the test of the hypothess H 0 : KD aganst H a : EKD and H 0 : D aganst H a : EKD are 1.9 (p-value = 0.17) and 13.4 (p-value = 0.0012). Consequently KD dstrbuton s the best dstrbuton based on the LR statstc. The KD dstrbuton gves smaller SS value than Dagum dstrbuton and slghtly bgger than EKD. For the non nested models the values of AIC and AICC for KD and EKW models are very close however the BIC value for KD dstrbuton s slghtly smaller than the correspondng value for the EKW dstrbuton. We conclude that KD model compares favorably wth the EKW dstrbuton and thus provdes a good ft for the ar condtonng system data. For the baseball player salary data set ntal values for EKD model n SAS code are α = 70 λ = 0.01 δ = 1.026 φ = 0.1 θ = 1. The EKD dstrbuton s a better ft than KD and Dagum dstrbutons for ths data as well as the other dstrbutons. The values of the statstcs AIC AICC and BIC for KD dstrbuton are smaller compared to the non nested dstrbutons. The LR statstcs for the test of the hypotheses H 0 : KD aganst H a : EKD and H 0 : D aganst H a : EKD are 93.1 (p-value< 0.0001) and 361.5

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 17 of 20 Fgure 5 Observed probablty vs predcted probablty for data sets. (p-value < 0.0001). Consequently we reject the null hypothess n favor of the EKD dstrbuton and conclude that the EKD dstrbuton s sgnfcantly better than the KD and Dagum dstrbutons based on the LR statstc. The value of AIC AICC and BIC statstcs are lower for the EKD dstrbuton when compared to those for the EKW and BKW dstrbutons. For poverty rate data ntal values for EKD model are α = 73 λ = 0.1 δ = 0.15 φ = 60 θ = 0.33. The LR statstc for the test of the hypotheses H 0 : KD aganst H a : EKD and H 0 : D aganst H a : EKD are 8.2 (p-value = 0.0042) and 81.1 (p-value < 0.0001) respectvely. The values of AIC AICC and BIC statstcs shows EKD dstrbutons s a better model and the SS value of EKD model s comparatvely smaller than the correspondng values for the KD and D dstrbutons. Consequently we conclude that EKD dstrbuton sthebestftforthepovertyratedata. 9 Conclusons We have proposed and presented results on a new class of dstrbutons called the EKD dstrbuton. Ths class of dstrbutons have applcatons n ncome and lfetme data analyss. Propertes of ths class of dstrbutons ncludng the seres expanson of pdfs cdfs moments hazard functon reverse hazard functon ncome nequalty measures such as Lorenz and Bonferron curves are derved. Reny entropy order statstcs relablty mean

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 18 of 20 Fgure 6 Emprcal survval functon for data sets. and medan devatons are presented. Estmaton of the parameters of the models and applcatons are also gven. Future work nclude MCMC methods wth censored data and regresson problems wth concomtant nformaton. Appendx RCodes nstall.packages( stats4 ) nstall.packages( bbmle ) lbrary(stats4) lbrary(bbmle) lbrary(stats) # Defne Functon #defneekdpdf g=functon(alphalambdadeltaphthetax){ y=alpha*lambda*delta*ph*theta*((x)ˆ(-delta-1))*((1+lambda*(xˆ(-delta)))ˆ(-alpha-1))*((1-((1+lambda*(xˆ(-delta)))ˆ(- alpha)))ˆ(ph-1))*((1-((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(ph)))ˆ(theta-1)) return(y) } #defneekdcdf

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 19 of 20 G=functon(alphalambdadeltaphthetax){ y=(1-((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(ph)))ˆ(theta) return(y) } #defneekdhazard h=functon(alphalambdadeltaphthetax){ y=g(alphalambdadeltaphthetax)/(1-g(alphalambdadeltaphthetax)) return(y) } #defneekdquantle quantle=functon(alphalambdadeltaphthetaq){ ((lambda)ˆ(1/delta))*((((1-((1-((q)ˆ(1/theta)))ˆ(1/ph)))ˆ(-1/alpha))-1)ˆ(-1/delta)) } # defne EKD moments. #note:k<delta moments=functon(alphalambdadeltaphthetak){ f=functon(alphalambdadeltaphthetakx){(xˆk)*(g(alphalambdadeltaphthetax))} y=ntegrate(flower=0upper=infsubdvsons=100000alpha=alphalambda=lambdadelta=deltaph=phtheta=thetak=k) return(y) } #defneekdi(a) Ia=functon(alphalambdadeltaphthetaa){ n=length(a) y=0 for( n 1:n){ y[]=ntegrate(functon(alphalambdadeltaphthetax){x*g(alphalambdadeltaphthetax)}lower=0upper=a[] subdvsons=100000alpha=alphalambda=lambdadelta=deltaph=phtheta=theta)$value } return(y) } # defne EKD bonferron # note: p s between (01) bonferron=functon(alphalambdadeltaphthetap){ q=quantle(alphalambdadeltaphthetap) mu=moments(alphalambdadeltaphtheta1)$value y=(ia(alphalambdadeltaphthetaq))/(p*mu) return(y) } #defneekdlorenz # note: p s between (01) lorenz=functon(alphalambdadeltaphthetap){ q=quantle(alphalambdadeltaphthetap) mu=moments(alphalambdadeltaphtheta1)$value y=(ia(alphalambdadeltaphthetaq))/(mu) return(y) }

Huang and Oluyede Journal of Statstcal Dstrbutons and Applcatons 2014 1:8 Page 20 of 20 Competng nterests The authors declare that they have no competng nterests. Authors contrbutons SH provded the R codes conducted the smulatons and the applcatons. BOO proposed developed the statstcal propertes of the new famly of dstrbutons and drafted the manuscrpt. All authors read and approved the fnal manuscrpt. Authors nformaton Shujao Huang s a graduate student at Georga Southern Unversty and Broderck O. Oluyede s Professor of Mathematcs and Statstcs at Georga Southern Unversty. Receved: 22 November 2013 Accepted: 11 March 2014 Publshed: 16 June 2014 References Chambers J Cleveland W Klener B Tukey P: Graphcal Methods for Data Analyss. Chapman and Hall London (1983) Cordero GM Ortega EMM Nadarajah S: The Kumaraswamy Webull dstrbuton wth applcaton to falure data. J. Frankln Inst. 3471399 1429 (2010) Cordero GM Gomes AE de-slva CQ Ortega EMM: The Beta Exponentated Webull Dstrbuton. J. Stat. Comput. Smulat. 83(1)114 138 (2013) Dagum CA: New model of personal ncome dstrbuton: specfcaton and estmaton. Econome Applque e. 30 413 437 (1977) Domma F Condno F: The Beta-Dagum dstrbuton: defnton and propertes. Communcatons n Statstcs-Theory and Methods. 44(22)4070 4090 (2013) Domma F Gordano S Zenga M: Maxmum lkelhood estmaton n Dagum dstrbuton wth censored samples. J. Appl. Stat. 38(21) 2971 2985 (2011) Kleber C: A Gude to the Dagum Dstrbutons. In: Duangkamon C (ed.) Modelng Income Dstrbutons and Lorenz Curve Seres: Economc Studes n Inequalty Socal Excluson and Well-Beng 5. Sprnger New York (2008) Kleber C Kotz S: Statstcal sze dstrbutons n economcs and actuaral scences. Wley New York (2003) Kumaraswamy P: Generalzed probablty densty functon for double-bounded random process. J. Hydrol. 46 79 88 (1980) McDonald B: Some generalzed functons for the sze dstrbuton of ncome. Econometrca. 52(3)647 663 (1984) McDonald B Xu J: A generalzaton of the beta dstrbuton wth applcaton. J. Econometrcs. 69(2)133 152 (1995) Oluyede BO Rajasoorya S: The Mc-Dagum Dstrbuton and Its Statstcal Propertes wth Applcatons. Asan J. Mathematcs and Applcatons. 2013(85) (2013). http://scenceasa.asa/ndex.php/ama/artcle/vew/85/44 1 16 Proschan F: Theoretcal explanaton of observed decreasng falure rate. Technometrcs. 5 375 383 (1963) Reny A: On measures of entropy and nformaton. Berkeley Symp. Math. Stat. Probablty. 1(1) 547 561 (1960) do:10.1186/2195-5832-1-8 Cte ths artcle as: Huang and Oluyede: Exponentated Kumaraswamy-Dagum dstrbuton wth applcatons to ncome and lfetme data. Journal of Statstcal Dstrbutons and Applcatons 2014 1:8. Submt your manuscrpt to a journal and beneft from: 7 Convenent onlne submsson 7 Rgorous peer revew 7 Immedate publcaton on acceptance 7 Open access: artcles freely avalable onlne 7 Hgh vsblty wthn the feld 7 Retanng the copyrght to your artcle Submt your next manuscrpt at 7 sprngeropen.com