DESIGN OF BEAMS AND SHAFTS

Similar documents
Chapter Objectives. Design a beam to resist both bendingand shear loads

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.


EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members

Use Hooke s Law (as it applies in the uniaxial direction),

[8] Bending and Shear Loading of Beams

CHAPTER 4. Stresses in Beams

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

Mechanics of Solids I. Transverse Loading

Mechanics of Structure

Symmetric Bending of Beams

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

Samantha Ramirez, MSE

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006

Strength of Materials II (Mechanics of Materials) (SI Units) Dr. Ashraf Alfeehan

Beam Design and Deflections

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

NAME: Given Formulae: Law of Cosines: Law of Sines:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

6. Bending CHAPTER OBJECTIVES

Mechanics of Materials CIVL 3322 / MECH 3322

National Exams May 2015

ME325 EXAM I (Sample)

FLOW CHART FOR DESIGN OF BEAMS

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

PES Institute of Technology

CHAPTER 6: Shearing Stresses in Beams

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

Advanced Structural Analysis EGF Section Properties and Bending

2014 MECHANICS OF MATERIALS

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

Question 1. Ignore bottom surface. Problem formulation: Design variables: X = (R, H)

This procedure covers the determination of the moment of inertia about the neutral axis.

MECE 3321: Mechanics of Solids Chapter 6

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2


CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

Sub. Code:

,. 'UTIS. . i. Univcnity of Technology, Sydney TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE.

CHAPTER 4: BENDING OF BEAMS

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem

Design of Beams (Unit - 8)

Homework 6.1 P = 1000 N. δ δ δ. 4 cm 4 cm 4 cm. 10 cm

Chapter 7: Internal Forces

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Structural Steelwork Eurocodes Development of A Trans-national Approach

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

Outline. Organization. Stresses in Beams

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

FIXED BEAMS IN BENDING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

CIV E 205 Mechanics of Solids II. Course Notes

CIV100 Mechanics. Module 5: Internal Forces and Design. by: Jinyue Zhang. By the end of this Module you should be able to:

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

Beams. Beams are structural members that offer resistance to bending due to applied load

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

71- Laxmi Nagar (South), Niwaru Road, Jhotwara, Jaipur ,India. Phone: Mob. : /

2012 MECHANICS OF SOLIDS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

Entrance exam Master Course

[5] Stress and Strain

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

The University of Melbourne Engineering Mechanics

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

3 Hours/100 Marks Seat No.

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Downloaded from Downloaded from / 1

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

P.E. Civil Exam Review:

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

Dr. Hazim Dwairi. Example: Continuous beam deflection

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics)

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

Transcription:

DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1

asis for eam Design - The effects of an internal axial force are often neglected in design. - Application of shear and flexure formulas are limited to beams made of a homogeneous material that has linear-elastic behavior. - The cross-sectional area must have an axis of symmetry in the plane of the loading. - The design does provide an adequate means of obtaining both a safe and economical design. 2

Stress Variations Throughout a Prismatic eam P w A R A - 2 m 2 m R V M R A R A R A - P - M max x -R x - 5 4 3 2 1 V M τ 4 τ 3 τ 2 Shear stress distribution (τ) σ 5 σ 4 σ 5 σ 2 ending stress distribution (σ) 3

- 5 4 3 2 1 V M τ 4 τ 3 τ 2 τ max σ 5 σ 4 τ σ 2 σ 5 5 y x σ 5 σ 1 x (-σ 5, 0) σ 2 σ y (0, 0) 4 y x σ 4 x (-σ 4, τ 4 ) σ 1 τ max τ max τ σ 2 σ τ 4 τ max τ y (0, -τ 4 ) x (0, τ 3 ) 3 y x σ 1 σ 2 σ τ 3 y (0, -τ 3 ) 4

- 5 4 3 2 1 V M σ 5 τ 4 σ 4 τ 3 τ 2 2 σ1σ τ τ max x (σ 2, τ 2 ) 2 y x σ 2 σ 1 σ 2 σ τ 2 y (0, -τ 2 ) τ max τ τ max 1 y x σ 1 σ 1 y (0, 0) σ 2 σ x (σ 1, 0) τ max 5

Prismatic eam Design Section Modulus (S) σ Mc I M I / c M S S req' d M σ allow 6

Example 1 A beam is to be made of steel that has an allowable bending stress of σ allow 150 MPa and an allowable shear stress of τ allow 100 MPa. Select an appropriate W shape that will carry the loading shown. 200 kn 100 kn 2 m 2 m 2 m 7

200 kn 100 kn 50 kn 250 kn 2 m 2 m 2 m V(kN) 50 M(kN m) -150 100-100 - -200 x(m) x (m) Allowable normal stress: σ allow 150 MPa σ S req d M S M σ allow (200x10 3 ) 1333x10 3 mm 3 150x10 6 Using the table in Appendix, the following beams are adequate: W 610x82 S 1870x10 3 mm 3 W 460x97 S 1910x10 3 mm 3 W 460x89 S 1770x10 3 mm 3 W 460x82 S 1610x10 3 mm 3 W 460x74 S 1460x10 3 mm 3 W 410x85 S 1510x10 3 mm 3 Use W 460x74 because the beam having the least weight. 8

200 kn 100 kn W 460x74 : A 9460 mm 2, d 457 mm, t w 9.02 mm, b f 190 mm, t f 14.5 mm, I 333x10 6 mm 4, 50 kn 250 kn 2 m 2 m 2 m V(kN) 100 50 - x(m) 221.25 14.5 214 9.02 190 457-150 heck allowable shear stress: τ allow 100 MPa Q (221.25)(190x14.5) (214/2)(214x9.02) τ max 816.08x10-6 m 3 VQ It V(816.08x10-6 ) (333x10-6 )(0.00902) 32.6 MPa <100 MPa, O.K. 271.7V (271.7 )(150x10 3 ) 9

200 kn 100 kn heck shear and normal stress at 50 kn 250 kn 2 m 2 m 2 m 200 kn m σ max 137.2 MPa τ max V(kN) 50 M(kN m) -150 100-100 - -200 30.44 MPa 128.5 MPa 214 150 kn Β x(m) σ, MPa τ I 333x10 6 mm 4 x (m) - ending: σ σ - Shear: τ τ My V max Q It (150x10 3 )[(0.2213)(0.19x0.0145)] (333x10-6 )(0.00902) I σ τ (-200x10 3 )(0.214) (333x10-6 ) -128.5 MPa 9.02 221.25 190 Q 14.5 30.44 MPa 10

30.44 MPa y x 128.5 MPa σ average σ x σ y -128.530-64.27 MPa 2 2 R σ x - σ y ( ) (τ xy ) 2 2 (64.27) 2 (30.44) 2 ± 71.11 MPa σ avg -64.27 MPa (-64.27, 71.11) τ σ - R average (-135.4, 0) 2 (-128.5, -30.44) x R O y (0, 30.44) 1 (6.84, 0) σ σ average R τ max 71.11 MPa < 100 MPa, O.K. σ max 135.4 MPa < 150 MPa, O.K. (-64.27, -71.11) (σ x - σ y )/2 (-128.5)/2 64.27 11

omments Q ya 221.25 14.5 214 9.02 457 Q (221.25)(190x14.5) (214/2)(214x9.02) 816083.71 mm 3 816.08x10-6 m 3 190 τ max VQ It V(816.08x10-6 ) (333x10-6 )(0.00902) 271.7V 221.25 14.5 214 9.02 457 τ avg V max A web V (0.457-2x0.0145)(0.00902) 190 259.03V 4.7 % off 221.25 14.5 214 9.02 190 457 τ avg V max A web V (0.457)(0.00902) 242.59V 10.7 % off Note: dimension in mm I 333x10 6 mm 4, 12

Example 2 The laminated wooden beam shown supports a uniform distributed loading of 12 kn/m. If the beam is to have a height-to-width ratio of 1.5, determine its smallest width. The allowable bending stress is σ allow 9 MPa and the allowable shear stress is τ allow 0.6 MPa. Neglect the weight of the beam. 12 kn/m 1.5a A 1 m 3 m a 13

12 kn/m A 1 m 32 kn 3 m V (kn) 20 - -12 M (kn m) 16 kn a 16 12 x 0 x1.33 m x (m) - -16 1.5a heck allowable shear stress τ allow 0.6 MPa VQ τ It V τ 1.5 A 20x10 0.6x10 3 6 1.5 1.5(a 2 ) 10.67 a 0.183 m 183 mm - x (m) Use a 185 mm -6 14

12 kn/m A 1 m 32 kn 3 m V (kn) 20 16 kn 16 12 x 0 1.5a 277.5 a 185 mm heck allowable normal stress σ allow 9 MPa - -12 x1.33 m - -16 x(m) σ max Mc I (10.67x10 3 )(278/2) (1/12)(185)(278 3 ) M (kn m) 4.48 MPa 10.67 4.48 MPa < 9 MPa, O.K. - x (m) Use a 185 mm -6 15

Example 3 The wooden T-beam shown is made from two x 30 mm boards. If the allowable bending stress is σ allow 12 MPa and the allowable shear stress is τ allow 0.8 MPa, determine if the beam can safely support the loading shown without having the deflection more than L/240. The spacing of nails specified to hold the two boards together if each nail can resist 1.50 kn in shear are: between use 125 mm, and D use 250 mm. Take E 12 GPa, and the formula for deflection at the the mid-span: 4 3 5wL PL υ ( ) 768EI 48EI w0.5 kn/m P1.5 kn 30 mm 2 m 2 m D 30 mm 16

0.5 kn/m 1.5 kn 1.5 kn 2 m 2 m V (kn) 1.5 D 1 kn 0.5-1.0 - -1.0 x (m) M (kn m) 2.0 x (m) 17

Section property y ' y 30 mm y ya A (100 )( 200 30 ) (215 )( 200 2(200 30 ) 30 ) 30 mm 157.5 mm y ' 230 157.5 72.5 mm I Σ ( I Ad 2 ) ( I Ad 2 ) ( I Ad 2 ) web flang [(1/12)(30)(200 3 ) (30x200)(157.5-100) 2 ] [(1/12)(200)(30 3 ) (200x30)(215-157.5) 2 ] 60.125x10 6 mm 4 60.12x10-6 m 4 18

0.5 kn/m 1.5 kn - Stress distribution at point 1.5 kn 2 m 2 m D 1 kn 0.309 V (kn) 1.5 1.5 kn τ -, MPa 0.5-1.0 - -1.0 (60.12x10-6 )(0.03) x(m) heck allowable shear stress: τ allow 0.8 MPa τ max V max Q It (1.5x10 3 )[(0.07875)(0.03x0.1575)] 72.5 157.5 200 30 200 0.309 MPa 0.309 MPa < 0.8 MPa, O.K. 30 I 60.12x10-6 m 4 19

0.5 kn/m 1.5 kn - Stress distribution at point 1.5 kn 2 m 2 m M(kN m) 2.0 D 1 kn x (m) 20 kn m 0.206 1 kn τ, MPa 5.24 σ, MPa 200 heck allowable normal stress: σ allow 12 MPa σ max Mc I (2x103 )(0.1575) (60.12x10-6 ) 72.5 157.5 30 200 2 kn m 5.24 MPa 5.24 MPa < 12 MPa, O.K. 30 I 60.12x10-6 m 4 20

w0.5 kn/m P1.5 kn υ L 4 5wL 768EI 1.5 k N L/22 m L/22 m 3 PL ( ) 48EI D 72.5 1 kn 157.5 200 30 200 30 I 60.12x10-6 m 4 heck maximum deflection: υ allow L/240 υ L 4 5wL 768EI 3 PL ) ( 48EI 4 5(.5)4 ) 9 768(12 10 )(60.12 10 0.00115 0.00277 0.00392 m, ( ) < 4 240 ) 3 (1.5)4 9 48(12 10 )(60.12 10 ( 6 6 0.0167 m, O. K. ) ) 21

0.5 kn/m 1.5 kn 1.5 kn 2 m 2 m V(kN) 72.5 30 1.5 157.5 200 0.5 x(m) - 30-1.0-1.0 I 60.125x10-6 m 4 Nail spacing: s 125 mm, and s D 250 mm; (F s ) allow 1.5 kn - Segment D 1 kn F nail τa shear VQ ( It ) 200 (s x0.03) τ -, MPa τ F nail (1.5x10 3 )[(0.0575)(0.2x0.03)] (0.125x0.03) (60.12x10-6 )(0.03) 1.076 kn < 1.5 kn, O.K. 22

0.5 kn/m 1.5 kn 1.5 kn 2 m 2 m - Segment D D 1 kn V (kn) 1 m 72.5 30 1.5 1 157.5 200 0.5 x(m) - 30-1.0-1.0 I 60.125x10-6 m 4 Nail spacing: s 125 mm, and s D 250 mm; (F s ) allow 1.5 kn F nail τa shear VQ ( It ) 200 (s D x0.03) τ -, MPa τ F nail (1x10 3 )(0.0575)(0.2x0.03) (60.12x10-6 )(0.03) (0.25x0.03) 1.434 kn < 1.5 kn, O.K. 23

Example 4 From the beam shown, determine the largest load P that can be applied to the beam. Requirements specified: σ allow 12 MPa τ allow 0.8 MPa Nail spacing @ 150 mm φ 3 mm τ allow 200 MPa P 2 m 2 m D 72.5 mm 30 mm 157.5 mm I 60.12x10-6 mm 4 24

V (N) M (N m) P P/2 2 m 2 m P/2 P/2 -P/2 P 30 mm 72.5 mm D P/2 157.5 mm I 60.125x10-6 mm 4 x (m) -P/2 x (m) Q neck A neck y 30 (0.03 0.2)(72.5 ) 2 3 0.345 m Maximum shear force on Nail: Nail spacing @ 150 mm, φ 3 mm, τ allow 200 MPa F s (τ allow ) nail (A nail ) (200x10 6 )(πx0.0015 2 ) 1414 N VQ 1414 ( )( t s) It P ( )(0.345) 1414 2 )(0.150) 6 (60.125 10 ) P 3286 N 25

V (N) M (N m) P 2 m 2 m P/2 P/2 -P/2 P 30 mm 72.5 mm D 157.5 mm I 60.125x10-6 mm 4 x (m) -P/2 x (m) Q max A max y 0.1575 (0.03 0.1575)( ) 2 3 3 0.372 10 m ending: σ allow 12 MPa Shear : τ allow 0.8 MPa σ Mc I P(0.1575) 60.125 10 6 12 10 6 P 4580 N VQ τ It P 3 ( )(0.372 10 ) 6.8 10 2 (60.125 10 )(0.03) 0 6 P 3879 N 26

σ allow 12 MPa τ allow 0.8 MPa Nail spacing @ 150 mm φ 3 mm τ allow 200 MPa P 2 m 2 m D Summary: Nail, shear 3.28 kn, use 3 kn eam, bending 4.58 kn eam, shear 3.88 kn 27

Example 5 From the beam shown, determine the largest load w that can be applied to the beam. onditions specified: Wood σ allow 12 MPa in tension σ allow 8 MPa in compression τ allow 0.8 MPa For each nail, (F nail ) allow 1.5 kn @ 100-mm spacing w 72.5 mm 30 mm 4 m 2 m D 157.5 mm I 60.12x10-6 mm 4 28

w 1.5w 4 m 4.5w 2 m D 72.5 mm 157.5 mm 30 mm M (N m) 1.125w I 60.12x10-6 mm 4 x (m) -2w eam : ending : σ allow 12 MPa in tension, σ allow 8 MPa in compression - ompression - Tension 6 (2w)(0.1575) 6 ( 1. 125w)( 0. 1575) 8 10 12 10 6 6 60.12 10 60. 125 10 w 1.527 kn/m w 4.071 kn/m 6 (1.125w)(0.725) 8 10 6 (2w)(0.725) 6 12 10 60.12 10 6 60.12 10 w 5.897 kn/m w 4.975 kn/m 29

w 1.5w 4 m 4.5w 2 m D 72.5 mm 157.5 mm 30 mm V (N) 1.5w 2 w I 60.12x10-6 mm 4 x (m) M (N m) 1.125w -2.5w x (m) -2w eam: Shear @, τ allow 0.8 MPa VQ τ It 0.1575 (2.5w)(0.1575 0.03 ) 6 0.8 10 2 6 (60.125 10 )(0.03) w 1.55 kn/m Shear on nail : (F nail ) allow 1.5 kn spacing 100 mm VQ F s (τ allow ) nail (A s ) ( )( t s) It (2.5w)(0.2 0.03 0.0575) 1.5 ( t)(0.1) 6 (60.125 10 )( t) w 1.04 kn/m 30

σ allow 12 MPa in tension σ allow 8 MPa in compression τ allow 0.8 MPa (F nail ) allow 1.5 kn Nail spacing 100 mm w 4 m 2 m D Summary: eam bending, compression 1.53 kn/m tension 4.07 kn/m eam shear, 1.55 kn/m Nail shear 1.04 kn/m, use 1 kn/m 31