Nuclear effects in neutrino scattering

Similar documents
Nuclear aspects of neutrino energy reconstruction in current oscillation experiments

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

arxiv: v2 [nucl-th] 1 Jul 2010

Ulrich Mosel TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAA

Neutrino-Nucleus Interactions and Oscillations

Neutrino Responses and the Long Baseline Program

Neutrino-Nucleus Interactions. Ulrich Mosel

Introduction to Neutrino Interaction Physics NUFACT08 Summer School June 2008 Benasque, Spain Paul Soler

arxiv: v3 [nucl-th] 8 Nov 2016

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

NUCLEAR EFFECTS IN NEUTRINO STUDIES

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2013

The Study of ν-nucleus Scattering Physics Interplay of Cross sections and Nuclear Effects

arxiv: v1 [nucl-th] 26 Mar 2013

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Neutrinos Induced Pion Production in MINERvA

Neutrino-Nucleus Scattering at MINERvA

ECT GENIE FSI overview. Trento 13 July, GENIE FSI strategy features comparisons looking to future

Neutrino Interaction Physics for Oscillation Analyses

Charged Current Quasielastic Analysis from MINERνA

Effective spectral function for quasielastic scattering on nuclei

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino cross sections for future oscillation experiments

Project B.5: Hadrons in Nuclear Matter

Hadronic Transportwith the GiBUU model

C. Djalali, M. H. Wood (University of South Carolina) R. Nasseripour ( George Washington University) D. P. Weygand (Jefferson Lab)

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

Nuclear Spin and Stability. PHY 3101 D. Acosta

arxiv: v2 [hep-ph] 7 Apr 2008

Standard Model of Particle Physics SS 2013

The Dilepton Probe from SIS to RHIC

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Many-Body Theory of the Electroweak Nuclear Response

Why understanding neutrino interactions is important for oscillation physics

arxiv:nucl-th/ v2 1 Sep 2006

Strange Electromagnetic and Axial Nucleon Form Factors

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Unraveling the ν-nucleus Cross-Section

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

PRELIMINARY RESULTS OF NEUTRINO INTERACTIONS STUDY USING GENIE EVENT GENERATOR *

QE or not QE, that is the question

arxiv: v1 [hep-ph] 19 Aug 2009

Sam Zeller Fermilab. PANIC 2011 July 26, 2011

vector mesons in medium: motivation & basic ideas theoretical models & simulation techniques:

Neutrino interactions and cross sections

Single π production in MiniBooNE and K2K

arxiv: v2 [nucl-th] 16 Jul 2018

Meson Exchange Current (MEC) model in Neutrino Interaction Generator

arxiv: v4 [hep-ex] 29 Jan 2018

O problemach z opisem produkcji pionów w oddziaªywaniach neutrin

In-medium Properties of Hadrons Mariana Nanova

On the measurements of neutrino energy spectra and nuclear effects in neutrino-nucleus interactions

PAVIA. Carlotta Giusti Matteo Vorabbi Franco Pacati Franco Capuzzi Andrea Meucci

Model independent extraction of the axial mass parameter from antineutrino-nucleon. scattering data. By: Jerold Young Adviser: Dr.

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

Recent results from MINERvA

Sub Threshold strange hadron production in UrQMD

arxiv: v1 [nucl-ex] 7 Sep 2012

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Confronting electron and neutrino scattering Can the axial mass controversy be resolved?

2 by the dipole approximation. 1 G D (q 2 )= ; M 2 V 2 =0:71 GeV 2 MV 2 G p E = G D(q 2 ); G n E =0; G p M = μ pg D (q 2 ); G n M = μ n G D (q 2 ): We

Quasi-Elastic Cross Sections Pittsburgh Neutrino Flux Workshop

Overview and Status of Measurements of F 3π at COMPASS

arxiv:hep-ph/ v1 13 Oct 2004

NC photon production: nuclear models and pion electro- & photo-production

Neutrino interaction at K2K

Dileptons in NN and AA collisions

Neutrino Interaction Cross Sections

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014

Neutrino-induced meson productions in resonance region

NEUTRINO ENERGY RECONSTRUCTION IN NEUTRINO-NUCLEUS INTERACTIONS

C. Djalali University of South Carolina) MENU2010, 6/3/ C. Djalali

Currents and scattering

DEEP INELASTIC SCATTERING

arxiv: v1 [nucl-th] 4 Mar 2011

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Supernovae and Neutrino Elastic Scattering. SN1998S, April 2, 1998 (8 SCT homemade CCD) Trento, June, 2003

Strangeness in Nucleus

NEUTRINO-NUCLEUS INTERACTIONS IN A COUPLED-CHANNEL HADRONIC TRANSPORT MODEL TINA J. LEITNER

PoS(Bormio2012)013. K 0 production in pp and pnb reactions. Jia-Chii Berger-Chen

arxiv: v1 [nucl-th] 10 Apr 2018

In-medium Properties of Hadrons

Leading Baryons at HERA

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

Topics in Standard Model. Alexey Boyarsky Autumn 2013

HADRON PRODUCTION IN WROCŁAW NEUTRINO EVENT GENERATOR

Neutrino Interactions at Low and Medium Energies

Quasi-elastic scattering, either with neutrinos or with anti-neutrinos, provides

arxiv: v3 [nucl-th] 7 Oct 2012

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni

13. Basic Nuclear Properties

The Dilepton Probe from SIS to RHIC

Studying Nuclear Structure

Neutrino Shadow Play Neutrino interactions for oscillation measurements

Axial currents in electro-weak pion production at threshold and in the -region

Electrons for Neutrinos

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Transcription:

European Graduate School Complex Systems of Hadrons and Nuclei JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Copenhagen - Gießen - Helsinki - Jyväskylä - Torino L. Alvarez-Ruso, T. Leitner, U. Mosel Introduction Neutrino-nucleon reactions: QE and (232) Inclusive nuclear cross section In-medium modifications Final state interactions Exclusive channels: π production and nucleon knockout QE scattering at MiniBooNE Conclusions

Introduction Neutrino nucleus interactions are relevant for: Oscillation experiments: systematic uncertainties neutrino fluxes backgrounds detector responses Hadron structure: nucleon axial form factor N-R axial transitions strangeness in the nucleon spin In-medium modifications: form factors spectral functions nuclear correlations Experiments: MINERνA, FINeSSE with a high intensity ν beam Understanding nuclear effects is essential for the interpretation of the data and represents both a challenge and an opportunity

Neutrino-nucleus scattering ν l - W +. Elementary reactions: ν l N l X 2. In-medium modifications of the elementary cross sections 3. Propagation of the final state X FSI

Neutrino-nucleus scattering ν l - W +. Elementary reactions: ν l N l X 2. In-medium modifications of the elementary cross sections 3. Propagation of the final state X FSI

Elementary neutrino-nucleon reactions ν QE RES,ν ν,ν ν DIS,ν σ ν N [ -38 cm 2 ].5.3. QE RES DIS we consider QE & : νn l p νn l + νp l ++.5.5 2 E ν [GeV]

Quasielastic scattering ν(k)+n(p) l (k )+X(p ) : d 2 σ νn dq 2 de l = dφ ( ) 64π 2 δ p 2 M 2 M 2 k p E ν matrix element for CC: M 2 = G2 F cos2 θ C L αβ H αβ 2 leptonic tensor L αβ hadronic tensor H αβ j α = ν l γ α ( γ 5 )l V A structure hadronic current: Jα X depends on the specific reaction parametrized in terms of form factors

Quasielastic scattering hadronic current: A α = ( γ α q/q α q 2 Jα QE = p Jα QE n =ū(p )Aαu(p) ) F V + i 2M σ αβ qβ F V 2 +γ αγ 5 F A + q αγ 5 M F P vector form factorsf,2 V (Q2 )=F p,2 Fn,2 related to electric & magnetic form factors by CVC BBA-23 parametrization axial form factorsf A (Q 2 ),F P (Q 2 ) related by PCAC dipole ansatz q/q α /q 2 extra term ensures vector current conservation for nonequal masses

resonance production hadronic current: J α = + J α () n = ψ β (p )B βα u(p) B βα = ψ β (p ) Rarita-Schwinger spinor ( C V 3 M (g αβ/q q β γ α )+ CV 4 M 2(g αβ q p q β p α )+ CV 5 M 2(g αβ q p q β p α)+g αβ C V 6 + CA 3 M (g αβ/q q β γα)+ CA 4 M 2(g αβq p q β p α )+CA 5 g αβ+ CA 6 M 2q βqα CVC & M + dominance PCAC Adler model ) γ 5 C4 V = M W CV 3 C 5 V = CV 6 = C V 3 e N scattering C A 6 =CA 5 M 2 Q 2 +m 2 π C5 A()= g Nπf π.2 6M C A 4 = 4 CA 5 C A 3 = dominant contribution:, C A 5 C V 3 width: p-wave Γ q CM 3 π momentum in the rest frame

Elementary cross sections dσ ν N /dq 2 [ -38 cm 2 /GeV 2 ] 2.5 2.5.5 ν n -> µ - p ν p -> µ - ++ ν n -> µ - +.8 Q 2 [GeV 2 ] E ν =. GeV σ ν N [ -38 cm 2 ].6.4.2.8 ν n -> µ - p ν p -> µ - ++ ν n -> µ - +.5.5 2 E ν [GeV]

Elementary cross sections.6.4 ν µ n -> µ - p ν µ n -> µ - π p.2.3 σ [ -38 cm 2 ].8 σ [ -38 cm 2 ]. 5% error in M A.5.5 2 E ν [GeV] 7% error in M A 5% error in C 5 A ().5.5 2 E ν [GeV].8 ν µ p -> µ - π + p.3 ν µ n -> µ - π + n σ [ -38 cm 2 ] σ [ -38 cm 2 ]. 7% error in M A A 5% error in C 5().5.5 2 E ν [GeV] 7% error in M A 5% error in C 5 A ().5.5 2 E ν [GeV]

Neutrino-nucleus scattering ν l - W +. Elementary reactions: ν l N l X 2. In-medium modifications of the elementary cross sections 3. Propagation of the final state X FSI

Neutrino-nucleus scattering ν W + l - Fermi motion Pauli blocking Nuclear binding In-medium width:. Elementary reactions: ν l N l X Γ Γ med = Γ+Γ coll 2. In-medium modifications of the elementary cross sections 3. Propagation of the final state X FSI

E µ [GeV] Inclusive cross section.8.8 Q 2 [GeV 2 ] d 2 σ/de µ dq 2 [ -38 cm 2 /GeV 3 ] 6 4 2 7 6 5 4 3 2 νµ 56 Fe µ X Eν=GeV.8 Q 2 [GeV 2 ] QE.8 E µ [GeV] 6 5 4 3 2

In-medium effects νµ 56 Fe µ X E ν =GeV,Q 2 =.5GeV 2 d 2 σ/(de µ dq 2 ) [ -38 cm 2 /GeV 3 ] 8 7 6 5 4 3 2 elementary + Fermi + Pauli + binding + in-medium width.3.5.7.8.9 E µ [GeV]

Neutrino-nucleus scattering ν l - W +. Elementary reactions: ν l N l X 2. In-medium modifications of the elementary cross sections 3. Propagation of the final state X FSI

Neutrino-nucleus scattering ν l - W +. Elementary reactions: ν l N l X 2. In-medium modifications of the elementary cross sections 3. Propagation of the final state X FSI

GiBUU Transport Model Semiclassical transport model in coupled channels Previously applied to heavy-ion collisions, e A, γ A, π A reactions Particles (i=n,, π, ρ, ) propagate according to the Boltzmann-Uehling-Uhlenbeck equation: df ) i dt =( t +( p H) r ( r H) p fi ( r, p,t)=i coll [f i,f N,fπ,f,...] H = (m i +Us) 2 + p 2 Hamiltonian U s ( r, p) non-local mean field potential f i ( r, p,t) phase space density for particle species i Set of BUU equations coupled via I coll

GiBUU Transport Model Collision integral accounts for changes in f i : elastic and inelastic scattering Pauli blocking for fermions decay of unstable particles most important processes: NN NN NNπ NN NN N NN FSI N N πn πn πn πn ππn absorption charge exchange redistribution of energy production of new particles

E µ [GeV] E µ [GeV] Pion production νµ 56 Fe µ πx at Eν = GeV.8.8.8 Q 2 [GeV 2 ].8 Q 2 [GeV 2 ] 8 6 4 2 π + π π + E µ [GeV] w/o FSI 8 6 4 2 E µ [GeV] w FSI.8.8 d 2 σ [ ] 38 cm2 deµdq 2 GeV 3.8 Q 2 [GeV 2 ].8 Q 2 [GeV 2 ] π 2 5 5 2 5 5

Pion production νµ 56 Fe µ πx σ π + [ -38 cm 2 ] 2 5 5 w/o FSI w FSI w FSI ( ) w FSI (QE) π + σ π [ -38 cm 2 ] 5 4 3 2 w/o FSI w FSI w FSI ( ) w FSI (QE) π.5.5 2 E ν [GeV].5.5 2 E ν [GeV]

Pion Production νµ 56 Fe µ πx dσ/dt π [ -38 cm 2 /GeV] Pion kinetic energy spectrum at 4 35 3 25 2 5 5 Eν=GeV πn strong absorption ( followed by ) side-feeding fromπ + into the π channel via charge exchange secondary pions from initial QE protons: shift to lower energies due to elastic w/o FSI w FSI w FSI ( ) w FSI (QE).8 T π [GeV] dσ/dt π [ -38 cm 2 /GeV] 2 8 6 4 π + π 2 N NN pn N NNπ πn πn w/o FSI w FSI w FSI ( ) w FSI (QE).8 T π [GeV]

Pion Production νµ 56 Fe µ πx dσ (w FSI) /dt / dσ (w/o FSI) /dt Ratio.6.4.2.8 R= (dσ/dt) w FSI (dσ/dt) w/o FSI..3.5 T [GeV] π π +

Pion Production νµ 56 Fe µ πx dσ (w FSI) /dt / dσ (w/o FSI) /dt Ratio.6.4.2.8 R= (dσ/dt) w FSI (dσ/dt) w/o FSI..3.5 T [GeV] π π + R d R d = (dσ/dp π) A /A 2/3 (dσ/dp π ) d /2 E γ =3-4 MeV C Nb Ca Pb E γ =5-6 MeV E γ =4-5 MeV E γ =7-8 MeV Similar pattern observed in π photoproduction B. Krusche et al., Eur. Phys. J A22 (24) 2 4 2 4 p π [MeV/c]

E µ [GeV] E µ [GeV] Nucleon Knockout νµ 56 Fe µ NXat.8.8.8 Q 2 [GeV 2 ].8 Q 2 [GeV 2 ] p p 5 4 3 2 5 4 3 2 E µ [GeV] w/o FSI E µ [GeV] w FSI.8.8 Eν=GeV.8 Q 2 [GeV 2 ].8 Q 2 [GeV 2 ] n n 8 6 4 2 8 6 4 2

Nucleon knockoutνµ 56 Fe µ NX σ p [ -38 cm 2 ] 7 6 5 4 p 3 2 w/o FSI w FSI w FSI ( ) w FSI (QE).5.5 2 E ν [GeV] σ n [ -38 cm 2 ] 45 4 35 3 25 2 5 5 w/o FSI w FSI w FSI ( ) w FSI (QE) n.5.5 2 E ν [GeV] Enhancement due to secondary interactions ( NN NN, N NN, )

Nucleon Knockoutνµ 56 Fe µ NX Nucleon kinetic energy spectrum at large number of nucleons at low kinetic energies flux reduction of high-energy protons p n Strong side-feeding Eν=GeV dσ/dt p [ -38 cm 2 /GeV] 4 35 3 25 2 5 5 w/o FSI w FSI w FSI ( ) w FSI (QE) p dσ/dt n [ -38 cm 2 /GeV] 4 35 3 25 2 5 5 w/o FSI w FSI w FSI ( ) w FSI (QE) n.8 T p [GeV].8 T n [GeV]

QE scattering at MiniBooNE Reaction: νµ + 2 C µ + X Observables averaged over MiniBooNE ν flux Fermi motion & Pauli blocking Fraction of ν µ Flux /. GeV - -2-3 ν µ Flux ν e Flux Local density approximation -4-5.5.5 2 2.5 3 E ν (GeV) J. Monroe, hep-ex/489 Polarization effects (nuclear RPA correlations) Following Singh & Oset NPA 542 (992) :

QE scattering at MiniBooNE

Conclusions A model for neutrino interactions with nuclei have been developed Elementary processes: both QE and (232) considered state-of-the-art form-factors (CVC & PCAC) Nuclear effects: Fermi motion, Pauli blocking, Binding Collisional broadening of the resonance FSI implemented by means of a semiclassical coupled-channel transport model (BUU) Combined description of Inclusive nuclear cross-section Exclusive channels: pion production, nucleon knockout FSI modifies considerably the distributions through rescattering, sidefeeding and absorption Nuclear correlations are important are low Q2