On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

Similar documents
PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

Integral Operator Defined by k th Hadamard Product

PROGRESSION AND SERIES

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

For this purpose, we need the following result:

Convergence rates of approximate sums of Riemann integrals

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

POWER SERIES R. E. SHOWALTER

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

THE ANALYTIC LARGE SIEVE

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

On New Bijective Convolution Operator Acting for Analytic Functions

Generating Function for

We will begin by supplying the proof to (a).

On Almost Increasing Sequences For Generalized Absolute Summability

Reversing the Arithmetic mean Geometric mean inequality

Generalisation on the Zeros of a Family of Complex Polynomials

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Integrals and Polygamma Representations for Binomial Sums

Linear Programming. Preliminaries

1.3 Continuous Functions and Riemann Sums

Convergence rates of approximate sums of Riemann integrals

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

About Some Inequalities for Isotonic Linear Functionals and Applications

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Mathematical Statistics

Using Difference Equations to Generalize Results for Periodic Nested Radicals

MA123, Chapter 9: Computing some integrals (pp )

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Fourier Series and Applications

( a n ) converges or diverges.

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

2.Decision Theory of Dependence

Summary: Binomial Expansion...! r. where

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Review of Sections

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Modular Spaces Topology

On Natural Partial Orders of IC-Abundant Semigroups

Some Integral Mean Estimates for Polynomials

On the k-lucas Numbers of Arithmetic Indexes

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Review of the Riemann Integral

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)

Limit of a function:

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

A note on random minimum length spanning trees

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

The Weierstrass Approximation Theorem

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Chapter 2 Infinite Series Page 1 of 9

Right-indefinite half-linear Sturm Liouville problems

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

«A first lesson on Mathematical Induction»

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Graphing Review Part 3: Polynomials

The Definite Riemann Integral

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

π,π is the angle FROM a! TO b

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Riemann Integration. Chapter 1

PROGRESSIONS AND SERIES

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

The Basic Properties of the Integral

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

The Area of a Triangle

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Definite Integral. The Left and Right Sums

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

Simultaneous Estimation of Adjusted Rate of Two Factors Using Method of Direct Standardization

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x.

Double Sums of Binomial Coefficients

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

MATH /19: problems for supervision in week 08 SOLUTIONS

ITI Introduction to Computing II

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

Riemann Integral and Bounded function. Ng Tze Beng

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Chapter 7 Infinite Series

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Sequence and Series of Functions

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

M3P14 EXAMPLE SHEET 1 SOLUTIONS

5.1 - Areas and Distances

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

Lacunary Weak I-Statistical Convergence

Generalized Fibonacci-Lucas Sequence

Transcription:

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this ppe we itoduce two ew clsses (α,, ξ, γ, δ) d T V (α,, ξ, γ, δ), <,0, 0, / ξ, 0 α / ξ, / < γ, 0o mily o lytic uctios o the om N deied s: 0 () () () () () () [ ()] (), 0, o,3,, We hve obtied coeiciet estimtes, gowth & distotio theoems, exteml popeties o these two clsses The detemitio o exteme poits o mily o uivlet uctios leds to solve my exteml poits Keywods--- Al-Oboudi Opeto, Covex Fuctios, Stlike Fuctios, Uivlet Fuctios L I INTROUCTION E deote the clss o uctios o the om + () () tht e lytic d uivlet i the disk < Fo 0 α < let S * ( d K( deote the submilies o S cosistig o uctios stlike o ode α d covex o ode α espectively The submily T o S cosists o uctios o the om (), 0, o,3,, () Silvem [6] ivestigted uctio i the clsses T * ( T S * ( d C( T K( Let N d 0 eote by the Al-Oboudi opeto [3] deied by : A A, 0 () () () ( )() + () () () [ Note tht o () is give by (), ()] () + [+ ( )), whe, is the Sălăge dieetil opeto : A A, TV Sudhs, eptmet o Mthemtics, SIVET College, Chei - 600 073, Idi E-mil: tvsudhs@edimilcom SP Viylkshmi, eptmet o Mthemtics, SIVET College, Chei - 600 073, Idi eiitio : [8] Let, R, 0, 0 d + () we deote by the lie opeto deied by : A A () + (+ ( )) Remk : I T, (), 0,, 3,, the () (+ ( )) I this ppe usig the opeto we itoduce the clsses (α,, ξ, γ, δ) d T V (α,, ξ, γ, δ) d obti coeiciet estimtes o these clsses whe the uctios hve egtive coeiciets We lso obti gowth d distotio theoems, closue theoem o uctios i these clsses eiitio : We sy tht uctio () T is i the clss (α,, ξ, γ, δ) i d oly i + () () + + () () ξ α γ () () whee <, 0, / ξ, 0, 0 α / ξ, / < γ, 0 eiitio 3: A uctio () T is sid to belog to the clss (α,, ξ, γ, δ) i d oly i ξ + + + + () () () α γ () + + () () ISSN 77-5048 0 Boig

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 7 whee <, 0, / ξ, 0, 0 α α / ξ, / < γ, 0 I we eplce 0, we obti the coespodig esults o SM Khi d Mee Moe [4] I we eplce 0, d γ we obti the esults o Aghly d Kulki [] d Silvem d Silvi [7] I we eplce 0, d ξ by, we obti the coespodig esults o [9] II MAIN RESULTS COEFFICIENT ESTIMATES Theoem : A uctio () ( 0) is i (α,, ξ, γ,δ) i d oly i Poo Suppose, ξδ( (+ ()) [(){ξδ + γδ} + δξ( ] ξ + () () + + () () ξ α γ () () (+ ( )) (+ ( )) (+ ( )) γ (+ ( )) + + α + (+ ( )) (+ ( )) we hve + (+ ( )) [(){ξδ + γδ} + δξ( ] () () δ ξ( + With the povisio, δ ξ γ (+ ()) (+ ()) (+ ()) ξδ( () α ()) γ( + + + + α + α + Fo < it is bouded bove by δ (+ ( )) ( ) δ ξ( () + () ()) < 0 (+ ()) δξ( (+ ()) (+ ()) < 0 (+ ( )) {ξα ξ ξ( ) + γ( )} p (α,, ξ, γ, δ) Now we pove the covese esult Let (+ ()) () ξ( + (+ ()) {ξ(α ) ξ()+ γ()} As Re () o ll, we hve (+ ()) () Re ξ( + (+ ()) {ξ( ξ()+ γ()} We choose vlues o o el xis such tht + is el d cleig the deomito o bove expessio d llowig though el vlues, we obti (+ ( )) {( )(ξδ + γδ) + δξ( } [ ξδ( (+ ( )) {( )(ξδ + γδ) + δξ( } ξδ( ] 0 Remk : I () (α,, ξ, γ, δ) the ISSN 77-5048 0 Boig

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 8 ξδ(, (+ ( )) {( )(ξδ + γδ) + δξ( },3,4, d equlity holds o ξδ( () (+ ( )) {()(ξδ + γδ) + δξ( } Coolly : I () p (α,0, ξ, γ, δ), tht is, eplcig 0, we get ξδ(,,3,4, ( ) δ (ξα ξ + γ γ) d equlity holds o ξδ( () ( ) δ (ξα ξ + γ γ) This coolly is due to [4] Coolly : I () 0,, γ we get p (α,0, ξ,, δ), tht is, eplcig ξδ(,,3,4, ( ) δ (ξα ξ + ) d equlity holds o ξδ( () ( ) δ (ξα ξ + ) This coolly is due to [] d [7] Coolly 3: I () p (α,0,,, δ) we get δ(,,3,4, ( ) δ (α ) d equlity holds o δ( () ( ) δ (α ) This coolly is due to [9] Coolly 4: () p (α,0,,,) i d oly i ( ( Theoem : A uctio () ( 0) is i (α,, ξ, γ,δ) i d oly i [+ ( )] + {( ){δξ + γδ} + δξ( } δξ( Poo: The poo o this theoem is logous to tht o Theoem [], becuse uctio () T V (α,, ξ, γ, δ) i d oly i () (α,, ξ, γ, δ) So it is eough tht i Theoem is eplced with + Remk : I () T V (α,, ξ, γ, δ) the + () (+ ( )) d equlity holds o + (+ ()) ξδ(, {( )(ξδ + γδ) + δξ( },3,4, ξδ( {()(ξδ + γδ) + δξ( } Coolly 5: I () T V (α,, ξ, γ, δ), tht is, eplcig 0, we get ξδ(,,3,4, {( ) δ(ξα ξ + γ γ)} d equlity holds o ξδ( () {( ) δ(ξα ξ + γ γ)} This coolly is due to [4] Coolly 6: I () T V (α, 0, ξ,, δ), tht is, eplcig 0,, γ we get ξδ(,,3,4, {( ) δ(ξα ξ + )} d equlity holds o ξδ( () {( ) δ(ξα ξ + )} This coolly is due to [] d [7] Coolly 7: I () T V (α, 0,,, δ), the δ(,,3,4, {( ) δ(α )} d equlity holds o δ( () {( ) δ(α )} Coolly 8: () T V (α, 0,,, ), i d oly i ( ( ISSN 77-5048 0 Boig

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 9 III GROWTH AN ISTORTION THEOREM Theoem 3: I () (α,, ξ, γ, δ) the (+ ) + (+ ) equlity holds o ξδ( { + ξδ γδ + ξδ( } ξ δ( () + 4ξδ δ(γ + ξ () ξδ( { + ξδ γδ + ξδ( } t ± Poo: By Theoem, we hve () (α,, ξ, γ, δ) i d oly i (+ ()) {( ){ξδ + γ} + ξδ( } ξδ( ξδ( Let t + ξδ γδ () (α,, ξ, γ, δ) i d oly i Whe (+ ( )) ( t) t (3) (+ ) ( t) (+ ( )) ( t) t This lst iequlity ollows om (3) we obti t () + + + (+ ) ( t) Similly t () (+ ) ( t) So, t () + ( + ) ( t) tht is, (+ ) + (+ ) Hece the esult t ( + ) ( t) ξδ( () { + ξδ γδ + ξδ( } ξδ( { + ξδ γδ + ξδ( } Coolly 3: I p (α,0, ξ, γ, δ), tht is, eplcig d 0, the p tht is, ξδ( () + ξδ γδ + ξδ + ξδα + d equlity o + ξδ( + ξδ γδ + ξδ + ξδα ξδ( () + 4ξδ δ( γ + ξα ) ξδ( + 4ξδ δ( γ + ξα ) ξ δ( () (+ 4ξδ) δ(γ + ξ This coolly is due to [4] Coolly 3: I (), 0 d γ, the t ± p (α,0, ξ,, δ), tht is, eplcig ξδ( () + 4ξδ δ(+ ξ ξδ( + + 4ξδ δ(+ ξ with equlity o, ξ δ( () + 4ξδ δ(+ ξ t ± This coolly is due to [] d [7] Coolly 33: I () p (α,0,,, δ), the δ( () + 4δ δ(+ δ( + + 4δ δ(+ with equlity o, δ( () (+ 4δ) δ(+ t ± Theoem 3: I () T V (α,, ξ, γ, δ) the ξδ( () + ( + ) {( + ξδ γδ) + ξδ( } + ( + ) + ξδ( {( + ξδ γδ) + ξδ( } Poo: The poo o this theoem is logous to tht o Theoem 3, becuse uctio () T V (α,, χ, γ, δ) i d oly i () (α,, ξ, γ, δ) So it is eough tht i Theoem is eplced with + ISSN 77-5048 0 Boig

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 0 Coolly 34: I () T V (α, 0, ξ, γ, δ) the ξδ( () (+ 4ξδ δ(γ + ξ ξδ( + (+ 4ξδ δ(γ + ξ with equlity o ξδ( () (+ 4ξδ) δ(γ + ξ t ± This coolly is due to [4] Coolly 35: I () T V (α, 0, ξ,, δ) the ξδ( () (+ 4ξδ δ(+ ξ ξδ( + (+ 4ξδ δ(+ ξ with equlity o ξδ( () (+ 4ξδ) δ(+ ξ t ± This coolly is due to [] d [7] Coolly 36: I () T V (α, 0,,, δ) the δ( () + 3δ δα δ( + + 3δ δα with equlity o δ( () + 3δ δα t ± This coolly is due to [9] Theoem 33: I () p (α,, ξ, γ, δ) the 4ξδ( () (+ ) {( γδ) + ξδ( + } 4ξδ( + (+ ) {( γδ) + ξδ( + } Poo Sice p (α,, ξ, γ, δ) we hve (+ ( )) ( t) t ξδ( whee t + ξδ γδ I view o Theoem 3, we hve ( t) (+ ) ( t) ( t) + t (4) + + Similly So, ( t) + ( + ) ( t) ( t) ( + ) ( t) ( t) ( t) () + ( + ) ( t) ( + ) ( t) Substitutig t, we hve 4ξδ( () (+ ) {( γδ) + ξδ( + } 4ξδ( + (+ ) {( γδ) + ξδ( + } Coolly 37: I (α,0, ξ, γ, δ) ) the 4ξδ( () ( γδ) + ξδ( 4ξδ( + ( γδ) + ξδ( o This coolly is due to [4] Coolly 38: I p (α,0, ξ,, δ) the 4ξδ( () ( δ) + ξδ( 4ξδ( + ( δ) + ξδ( This coolly is due to [] d [7] Coolly 39: I p (α,0,,, δ) the 4δ( () ( δ) + δ( 4δ( + ( δ) + δ( tht is, 4δ( () + 3δ δα 4δ( + + 3δ δα This coolly is due to [9] Theoem 34: I T V (α,, ξ, γ, δ) the p ISSN 77-5048 0 Boig

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 o (+ ) + + (+ ) 4ξδ( () {( γδ) + ξδ( + } + 4ξδ( {( γδ) + ξδ( + } Poo: The poo o this theoem is simil to tht o Theoem 33 becuse uctio () T V (α,, ξ, γ, δ) i d oly i () (α,, ξ, γ, δ) So it is eough tht i Theoem 33 is eplced with + Coolly 30: I T V (α, 0, ξ, γ, δ) the ξδ( () ( γδ) + ξδ( ξδ( + ( γδ) + ξδ( o This coolly is due to [4] Coolly 3: I T V (α, 0, ξ,, δ) the ξδ( () ( δ) + ξδ( ξδ( + ( δ) + ξδ( o This coolly is due to [] d [7] Coolly 3: I T V (α, 0,,, δ) the δ( () ( δ) + δ( δ( + ( δ) + δ( δ( () + 3δ αδ δ( + + 3δ αδ o This coolly is due to [9] IV Theoem 4: Let () d CLOSURE THEOREM ξδ( () [+ ( )] [( ){ξδ + γδ} + δξ( ] o, 3, 4, The () T V (α,, ξ, γ, δ) i d oly i () c be expessed i the oms () () whee 0 d Poo: Let () (), 0,,, with () we hve () + () () ξδ( [+ ()] [(){ξδ + γδ} + δξ( ] The ξδ( [ + ( )] [( ){ξδ + γδ} + δξ( ] [+ ( )] [( ){ξδ + γδ} + δξ( ] ξδ( () T V (α,, ξ, γ, δ) Covesely, suppose () T V (α,, ξ, γ, δ) the emk o Theoem gives us ξδ( [+ ( )] [( ){ξδ + γδ} + δξ( ] we tke [+ ()] [(){ξδ + γδ} + δξ( ], ξδ(,3,4, d The () () Coolly 4: I () d ξδ( (), ( ) δ(ξα ξ + γ γ) o,3, The () T V (α, 0, ξ, γ, δ) i d oly i () c be expessed i the om () () whee 0,,,, This coolly is due to [4] ISSN 77-5048 0 Boig

Boig Itetiol Joul o t Miig, Vol, No, Jue 0 Coolly 4: I () d ξδ( (), ( ) δ(ξα ξ + ) o,3, The () T V (α, 0, ξ,, δ) i d oly i () c be expessed i the om () () whee 0, [6] H Silvem, Uivlet uctios with egtive coeiciets [7] H Silvem d E Silvi, Subclsses o pestlike uctios, Mth Jpo, Vol 9, No 6, Pp 99935, 984 [8] TV Sudhs, R Thiumlismy, KG Submi, Mugu Acu, A clss o lytic uctios bsed o extesio o Al-Oboudi opeto, Act Uivesittis Apulesis, Vol, Pp 7988, 00 [9] S Ow d J Nishiwki, Coeiciet Estimtes o ceti clsses o lytic uctios, JIPAM, J Iequl Pue Appl Mth, Vol 35, Aticle 7, 5pp (electoic), 00,,, This coolly is due to [] d [7] Coolly 43: I () d δ( (), ( ) δ(α ) o,3, The () T V (α, 0,,, δ) i d oly i () c be expessed i the om () () whee 0,,,, This coolly is due to [9] Coolly 44: I () d () The () T V (0, 0,,, ) i d oly i () c be expessed i the om () () whee 0,,,, V CONCLUSION I this ppe mkig use o Al-oboudi opeto two ew subclsses o lytic d uivlet uctios e itoduced o the uctios with egtive coeiciets My subclsses which e ledy studied by vious eseches e obtied s specil cses o ou two ew subclsses We hve obtied vious popeties such s coeiciet estimtes, gowth distotio theoems Futhe ew subclsses my be possible om the two clsses itoduced i this ppe REFERENCES [] M Acu, S Ow, Note o clss o stlike uctios, Poceedig o the Itetiol shot wok o study o clculus opetos i uivlet uctio theoy, Kyoto, Pp 0, 006 [] R Aghly d S Kulki, Some theoems o uivlet uctios, J Idi Acd Mth, Vol 4, No, Pp 893, 00 [3] FM Al-Oboudi, O uivlet uctios deied by geelied Sălăge opeto, Id J Mth Sci, No 5-8, 49436, 004 [4] SM Khi d Mee Moe, Ceti mily o lytic d uivlet uctios, Act Mthemtic Acdemie Pedogicl, Vol 4, Pp 333344, 008 [5] SR Kulki, Some poblems coected with uivlet uctios, Ph Thesis, Shii Uivesity, Kolhpu, 98 ISSN 77-5048 0 Boig