Learning Units of Module 3

Similar documents
8 Properties of Lamina

2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials

Understand basic stress-strain response of engineering materials.

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

3D Elasticity Theory

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

ELASTICITY (MDM 10203)

Constitutive Equations

A short review of continuum mechanics

3D and Planar Constitutive Relations

Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina

Stress, Strain, Mohr s Circle

Chapter 2: Elasticity

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Hygrothermal stresses in laminates

Fundamentals of Linear Elasticity

Constitutive Relations

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam

Composites Design and Analysis. Stress Strain Relationship

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

Lecture 8. Stress Strain in Multi-dimension

9 Strength Theories of Lamina

Solid State Theory Physics 545

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.

LAMINATED COMPOSITE PLATES

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Basic Equations of Elasticity

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Module-6: Laminated Composites-II. Learning Unit-1: M6.1. M 6.1 Structural Mechanics of Laminates

Composite Structures. Indian Institute of Technology Kanpur

LAMINATED COMPOSITE PLATES

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Bending of Simply Supported Isotropic and Composite Laminate Plates

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Mechanics PhD Preliminary Spring 2017

Module 3: 3D Constitutive Equations Lecture 10: Constitutive Relations: Generally Anisotropy to Orthotropy. The Lecture Contains: Stress Symmetry

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Constitutive Relations

Macroscopic theory Rock as 'elastic continuum'

2. Mechanics of Materials: Strain. 3. Hookes's Law

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

Elasticity in two dimensions 1

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

CVEN 5161 Advanced Mechanics of Materials I

MECHANICS OF MATERIALS

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

MATERIAL ELASTIC ANISOTROPIC command

Chapter 2 General Anisotropic Elasticity

3.22 Mechanical Properties of Materials Spring 2008

Stacking sequences for Extensionally Isotropic, Fully Isotropic and Quasi-Homogeneous Orthotropic Laminates.

CHAPTER 4 Stress Transformation

Problem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn

Supplementary Information. for. Origami based Mechanical Metamaterials

Elements of Rock Mechanics

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Elasticity. Jim Emery 1/10/97, 14:20. 1 Stress 2. 2 Strain 2. 3 The General Infinitesimal Displacement 3. 4 Shear Strain Notation In Various Books 4

Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu

Basic concepts to start Mechanics of Materials

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Mechanics of Earthquakes and Faulting

Exercise: concepts from chapter 8

Anisotropic Distribution of Elastic Constants in Fuel Cell Gas Diffusion Layers: Theoretical Assessment

Mechanical Properties of Materials

Unit IV State of stress in Three Dimensions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

Chapter 5 Plane-Stress Stress-Strain Relations in a Global Coordinate System

BEAMS AND PLATES ANALYSIS

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Mechanics of Materials Lab

Fracture Mechanics, Damage and Fatigue: Composites

AE3160 Experimental Fluid and Solid Mechanics

MODELLING OF THE THERMO-MECHANICAL PROPERTIES OF WOVEN COMPOSITES DURING THE CURE

QUESTION BANK Composite Materials

EE C247B ME C218 Introduction to MEMS Design Spring 2017

ICES REPORT February Saumik Dana and Mary F. Wheeler

Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions (FET), Junuani, Bhilai, Chattishgarh.

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

INTRODUCTION TO STRAIN

Finite Element Method in Geotechnical Engineering

Mechanical Properties

Mechanics of Biomaterials

3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Constitutive Equations (Linear Elasticity)

Kirchhoff Plates: Field Equations

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

Lecture 8: Tissue Mechanics

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

A STUDY OF HYDRAULIC FRACTURE INITIATION IN TRANSVERSELY ISOTROPIC ROCKS. A Thesis VAHID SERAJIAN

Stress Integration for the Drucker-Prager Material Model Without Hardening Using the Incremental Plasticity Theory

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks

Transcription:

Module

Learning Units of Module M. tress-train oncepts in Three- Dimension M. Introduction to Anisotropic lasticity M. Tensorial oncept and Indicial Notations M.4 Plane tress oncept

Action of force (F) on a body Figure: Action of force (F) on a body

Action of force (F) on a body Figure: tress at a Point 4

Action of force (F) on a body Figure: lements -dimensional stress. All stresses have positive sense. 5

Global D train: Figure: Global -dimensional strain. 6

Global D train: Figure: Infinitesimal -dimensional strain. 7

Global D train: Figure M..4: General definition of D-strain 8

Global D train: Figure M..4: General definition of D-strain 9

tress-train urve of omposites omposite behavior: Matrix yields, fibers take load Failure at, f but not catastrophic

Lamina tress-train Relationships

tress omponents 9 components of stress: ij i, j,,

Types of tress. Normal tress i j. hear tress i j

ubscripts First subscript refers to direction of outer normal econd subscript refers to the direction in which the stress acts 4

tress ube 5

tress ube τ τ τ τ τ τ 6

train orresponding to each stress component, there is a strain component, ij describing the deformation at a point. Normal strains describe the extension per unit length. hear strains describe distortional deformation. Tensor and ngineering hear trains 7

TR TRAIN Tensor Notation ontracted Notation Tensor Notation ontracted Notation ( ) ( ) ( ) ( ) ( ) ( ) τ ( ) 4 γ 4 τ ( ) 5 γ 5 τ ( ) 6 γ 6 8

General Formula tresses and strains are related to each other. The most general form of this relationship is: (,,,,,,, ) ij f ij, 9

Linear lastic Material

9 tresses x 9 trains 8 omponents in relationship

ymmetry ij ji i j and ij ji i j

ymmetry ijkl ijkl and jikl ijlk 6 tresses x 6 trains 6 omponents in relationship

ontracted Notation: tresses 4 5 6 4

ontracted Notation : trains γ γ 4 γ γ 5 γ γ 6 5

Hooke s Law (tiffness) is the inverse of. These equations encompass all anisotropic crystalline behavior. 6

Hooke s Law (tiffness) i ij j i, j,, Κ,6 or { } [ ]{} 7

8 6 5 4 66 65 64 6 6 6 56 55 54 5 5 5 46 45 44 4 4 4 6 5 4 6 5 4 6 5 4 6 5 4 Hooke s Law

Hooke s Law (ompliance) i ij j i, j,, Κ,6 or {} [ ]{ } 9

Inverse Relationship [] and [] are symmetric matrices!

Heterogeneous omposite quivalent Homogeneous omposite

effective modulus. stress strain

Average tresses and trains i V V i dv dv V i V dv i,, Κ,6 i V V i dv dv V i V dv

Average Values {} [ ]{} and {} []{} We use the effective (or average ) values of stress, strain and moduli when referring to lamina behavior. 4

train nergy Density W ij i j and W i i ij j 5

econd Derivatives W i j ij and W j i ji 6

ymmetry ij ji and ij ji 7

8 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ ymmetry: omponents

9 Monoclinic Material; omponents plane of symmetry 6 5 4 66 55 45 44 6 6 6 6 5 4 YM Μ Μ Μ Μ Μ

Orthotropic Material: 9 onstants Three planes of symmetry θ y x 4

pecially Orthotropic Material Three planes of symmetry -- Directions are principal coordinate directions corresponding to symmetry planes, as shown on previous slide. 4

4 Orthotropic tiffness Matrix 6 5 4 66 55 44 6 5 4 YM Μ Μ Μ Μ Μ 9 omponents

Transversely Isotropic Material Three planes of symmetry and directions the same. θ y x 4

44 tiffness Matrix ( ) 6 5 4 66 66 6 5 4 YM Μ Μ Μ Μ Μ 5 omponents

Isotropic Material Three planes of symmetry, and directions the same. 45

46 tiffness Matrix ( ) ( ) ( ) 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ omponents

47 Anisotropic Material 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ

48 Anisotropic Material xtension xtension 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ

49 Anisotropic Material xtension xtension 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ xtension xtension-xtension oupling xtension oupling

5 xtension xtension 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ xtension xtension-xtension xtension oupling oupling hear-xtension oupling

5 xtension xtension 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ xtension xtension-xtension xtension oupling oupling hear-xtension oupling hear

5 xtension xtension 6 5 4 66 56 55 46 45 44 6 5 4 6 5 4 6 5 4 6 5 4 YM Μ Μ Μ Μ Μ xtension xtension-xtension xtension oupling oupling hear-xtension oupling hear-hear oupling hear

Material D Anisotropic Generally Orthotropic pecially Orthotropic Transversely Isotropic Isotropic Nonzero Terms 6 6 Independent terms 9 9 5 D Anisotropic Generally Orthotropic pecially Orthotropic Balanced Orthotropic Isotropic 9 9 5 5 5 6 4 4 5

Uniaxial Load in Fiber Direction 54

Resulting trains ν ν ν ν γ γ γ or 6 4 5 55

Transverse Load 56

Resulting trains ν ν ν ν or 6 4 5 γ γ γ 57

hear Load 6 6 58

Resulting trains γ 6 G 6 γ γ or 4 5 59

6 τ τ τ ν ν ν ν ν ν γ γ γ G G G ngineering Material Properties

ngineering Material Properties ν ν ν ν ν ν 4 4 G 5 5 6 6 G G 6

ngineering Material Properties,, Young's moduli in -, - and - directions ν, ν, ν Poisson's ratios (extension-extension coupling) G,G,G hear moduli in -,-,and -directions 6

ymmetry [] [ ] Due to ymmetry ν ij i ν ji j : 6

L L 64

L L 65

L ν ν L ν ν L L 66

ν L ν ν ν L 67

Inverse Relationship [ ] [ ] [] and [] are symmetric matrices! 68

Inverse Relationship 44 55 66 44 55 66 + 69

Inverse Relationship ν ν ν ν ν ν G G G 44 55 66 ν +ν ν ν +ν ν ν +ν ν ν +ν ν ν +ν ν ν +ν ν ν ν ν ν ν ν ν ν ν 7

Isotropic Material G ( +ν) <ν<.5 7

Orthotropic Material onstraints,,,,, > 44 55 66,,,G,G,G > 7

Orthotropic Material onstraints,,,,, > 44 55 66 ( ) ( ) ( ) ν ν, ν ν, ν ν > ν ν ν ν ν ν ν ν ν > 7

Orthotropic Material onstraints < < < 74

Orthotropic Material onstraints ( ) ( ) ( ) ν ν, ν ν, ν ν > ν ij i νji i,j,, j ν < ν < ν < ν < ν < ν < 75

Plane tress Orthotropic Material 4 5 or τ τ γ 66 76

Plane tress Orthotropic Material γ τ 6 66 77

Plane tress Orthotropic Material + 4 γ γ 5 78

ompliances : ompliance ν ν 66 G 79

ompliance ν 6 6 G ν 8

ompliance { } [ ]{ } ompliances: * 44 G * 55 G 66 ν G 8

tiffness { } [ Q]{ } 8

Lamina tiffness Matrix Q Q Q Q Q γ 66 8

Q Q Q Q ( ) ( ) ν ν ( ) ( ) ν ν 66 66 Q G tiffness Terms ( ) ( ) ν ν ν 84

ome Typical Properties 85

Material (Msi) (Msi) G (Msi) n T/94 Graphite /poxy 9..5.. A/5 Graphite /poxy.... p-/rl 96 Pitch Graphite /poxy 68..9.8. Kevlar 49 /94 Aramid/poxy..8..4 cotchply -glass/poxy 5.6..6.6 Boron/555 Boron/poxy 9.6.678.8. pectra 9/86 Polyethylene/poxy 4.45.5.. -glass/47-6 -glass/vinylester.54..4. 86

Generally Orthotropic Lamina y + θ x Positive Angle 87

Generally Orthotropic Lamina y θ x Negative Angle 88

y tress lement da sinθ da sin θ θ x dacosθ θ xy da x da da cos θ 89

quilibrium F x + x da dacos dasinθcosθ θ dasin θ + F y da xy da ( sin θ cos θ) dasinθcosθ + dasinθcosθ 9

tress Transformation cos θ+ sin θ sin θcos θ x xy ( ) sin θcos θ sin θcosθ+ cos θsin θ imilar derivation for y 9

9 Transformation in Matrix Form θ θ θ θ θ θ θ θ θ θ θ θ θ θ xy y x sin cos sin cos sin cos sin cos cos sin sin cos sin cos

ondensed Matrix Form c s cs x s c cs y cs cs c s xy 6 c cosθ and s sinθ 9

94 Transformation Matrix: [T] [ ] [ ] xy y x xy y x T T or

95 Matrices [ ] [ ] s c cs cs cs c s cs s c T s c cs cs cs c s cs s c T

96 train [ ] γ γ γ γ T or s c cs cs cs c s cs s c xy y x xy y x

tress and train x [ ] y T τ and τxy x [ ] y T γ xy γ 97

tress and train γ γ x x y y γ γ Reuter's Matrix: xy xy R [ ] 98

Lamina tiffness Matrix Q Q Q Q Q γ 66 99

tiffness Terms Q Q Q Q ( ) ( νν ) ( ) ( νν ) 66 66 Q G ( ) ( νν ) ν

x [ ] y T xy x [ ] [ ] y T Q xy [ ] Q γ γ

[ R ] γ γ [ ] R γ γ

x [ ] [ ] y T Q γ xy [ ] R γ γ x [ ] [ ][ ] y T Q R γ xy

x [ ] [ ][ ] y T Q R γ xy x [ ] T y γ γ xy x x [ T] [ Q][ R][ T] y y γ xy xy 4

x x [ R ] y y γ γ xy xy x x [ T] [ Q][ R][ T] y y γ xy xy x x [ T] [ Q][ R][ T][ R] y y γ xy xy 5

x x [ T] [ Q][ R][ T][ R] y y γ xy xy T [ R][ T][ R] [ T] -T inverse transpose 6

General tress-train Behavior x x T [ T] [ Q][ T] y y γ xy xy [ ] [ ] Q T [ Q][ T] 7

8 tress-train Behavior γ xy y x 66 6 6 6 6 xy y x Q Q Q Q Q Q Q Q Q

xplicit Relationships ( ) Q Q cos θ+ Q sin θ+ Q + Q sin θcos θ 4 4 66 ( ) ( 4 4 ) Q Q + Q 4Q cos θsin θ+ Q sin θ+ cos θ 66 ( ) Q Q sin θ+ Q cos θ+ Q + Q sin θcos θ 4 4 66 9

xplicit Relationships ( ) ( ) ( ) ( ) ( ) ( ) θ θ + + θ θ + θ θ + θ θ θ θ + θ θ 4 4 66 66 66 66 66 6 66 66 6 sin cos sin cos sin cos sin cos sin cos sin cos Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

tress-train Behavior γ xy y x 66 6 6 6 6 xy y x

tress-train Behavior T [ ] [ ][ ] T T x x y y γ xy xy

Inverse Relationship [ Q] [ ] [ ] [ ] Q ymmetric matrices!

xplicit Relationships θ + ( ) ( ) ( 4 4 + cos θsin θ + sin θ + cos θ) cos sin 4 4 θ + 66 sin cos 4 4 θ + θ + + θcos θ ( ) + sin θcos θ 66 66 sin 4

5 xplicit Relationships ( ) ( ) ( ) ( ) ( ) ( ) θ θ + + θ θ + θ θ + θ θ θ θ + θ θ 4 4 66 66 66 66 66 6 66 66 6 sin cos sin cos 4 sin cos sin cos sin cos sin cos

6 ngineering onstants xy xy y y y xy xy xy x x x xy y yx x xy xy y x G G G,, 6,, 6 66 η η η η ν ν

ngineering onstants 6 η xy, x 6 66 η y, xy 7

oefficients of Mutual Influence η η x,xy x,xy and η γ x xy y,xy oefficients of mutual influence of the first kind haracterize stretching in the x or y direction caused by shear stress in the xy plane. for xy τ all other stresses 8

oefficients of Mutual Influence η η xy,x xy,x and γ xy x η xy,y oefficients of mutual influence of the second kind. haracterizes shearing in the xy plane caused by normal stress in the xy for x plane. all other stresses 9

ngineering onstants 4 4 4 4 c c s G s s c s G c y x + ν + + ν +

ngineering onstants ( ) ( ) 4 4 4 4 4 s c G c s G G c s G s c xy x xy + + ν + + + + ν ν

ngineering onstants xy,y y xy y,xy xy,x x xy x,xy y xy,y x xy,x G G sc G c s G c s G sc G η η η η ν + ν + η ν + ν + η

T/94 Graphite/poxy 4 8 6 x y Gxy 4 4 5 6 7 8 9

cos sin cos cosθsin cos 4 4 Trig Identities θ θ 8 8 θsinθ θsin ( + 4cosθ + cos4θ) ( 4cosθ + cos4θ) θ 8 8 θ ( sinθ + sin4θ) ( sinθ sin4θ) 8 ( cos4θ) 4

Alternate Form for tiffness Q Q Q Q Q Q 6 6 66 U U U U 4 U + U U U cosθ + U cos4θ sinθ + U cosθ + U sinθ U sin4θ sin4θ cos4θ cos4θ ( U U ) U cos4θ 4 5

6 Invariants ( ) ( ) ( ) ( ) 66 4 66 66 4Q 6Q Q Q 8 U 4Q Q Q Q 8 U Q Q U 4Q Q Q Q 8 U + + + + + +

Alternate Form for ompliances 6 6 66 V V V V V 4 + V V V sinθ + sinθ cosθ + cos4θ cosθ + V V V V sin4θ sin4θ cos4θ cos4θ ( V V ) 4V cos4θ 4 7

8 Invariants ( ) ( ) ( ) ( ) 66 4 66 66 6 8 V 8 V V 8 V + + + + + +

Q U 4 θ p 4θ p U U U Q 9

Transversely Isotropic Material G ν ν G G ν ν ( + ν )

Balanced Orthotropic Material

Balanced Orthotropic Lamina. o and 9 o cross-plies. Woven Materials. omponents Q Q