Quantum op*cs. Chris Westbrook Antoine Browaeys

Similar documents
Hong-Ou-Mandel effect with matter waves

January 2010, Maynooth. Photons. Myungshik Kim.

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

Solutions for Exercise session I

Quantum physics and the beam splitter mystery

Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics

Single photons. how to create them, how to see them. Alessandro Cerè

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Hong Ou Mandel experiment with atoms

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism

Coherent states, beam splitters and photons

Quantum atom optics with Bose-Einstein condensates

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

Correlation functions in optics; classical and quantum 2. TUW, Vienna, Austria, April 2018 Luis A. Orozco

Rayleigh scattering:

The Hanbury Brown and Twiss effect: from stars to cold atoms

MESOSCOPIC QUANTUM OPTICS

Lecture 03. The Cosmic Microwave Background

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Nonclassical atom pairs in collisions of BECs: from squeezing to Bell test proposals

of a Fabry-Perot cavity

We can't solve problems by using the same kind of thinking we used when we created them.!

1/30/11. Astro 300B: Jan. 26, Thermal radia+on and Thermal Equilibrium. Thermal Radia0on, and Thermodynamic Equilibrium

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

Quantum superpositions and correlations in coupled atomic-molecular BECs

Polarization from Rayleigh scattering

AP/P387 Note2 Single- and entangled-photon sources

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching

arxiv:quant-ph/ v1 19 Aug 2005

16. GAUGE THEORY AND THE CREATION OF PHOTONS

Introduction to Atomic Physics and Quantum Optics

Elements of Quantum Optics

8 Incoherent fields and the Hanbury Brown Twiss effect

MODERN OPTICS. P47 Optics: Unit 9

Top Le# side TEST Right side bo.om

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Correlation functions in optics and quantum optics, 4

Contents. qued-hbt. Hanbury-Brown-Twiss Add-On. qued-hbt Manual V qued-hbt: Hanbury-Brown-Twiss Manual Quickstart Manual...

Introduction to Atomic Physics and Quantum Optics

0.5 atoms improve the clock signal of 10,000 atoms

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

MITOCW watch?v=8osuq1yxcci

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Top Le# side TEST Right side bo.om

UNIVERSITY OF SOUTHAMPTON

Basics of Infrared Detection

Testing The Existence of Single Photons

Lecture 8 Con,nuous- Wave Laser*

Labs 3-4: Single-photon Source

LIGHT and Telescopes

Introduction to particle physics Lecture 3: Quantum Mechanics

Learning about order from noise

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube

Frequency and time... dispersion-cancellation, etc.

On a proposal for Quantum Signalling

Lab 1 Entanglement and Bell s Inequalities

CHE3935. Lecture 2. Introduction to Quantum Mechanics

Quantum noise studies of ultracold atoms

Quantum and Nano Optics Laboratory. Jacob Begis Lab partners: Josh Rose, Edward Pei

Chapter 27. Quantum Physics

9.3. Total number of phonon modes, total energy and heat capacity

Light and Vacuum Downloaded from by on 11/22/17. For personal use only.

On a proposal for Quantum Signalling

Quantum Optics and Quantum Information Laboratory Review

Interactions and Charge Fractionalization in an Electronic Hong-Ou-Mandel Interferometer

4. Spontaneous Emission october 2016

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 2 Proposal for Demonstrating the Hong Ou Mandel Effect with Matter Waves

Phonon II Thermal Properties

V. The Thermal Beginning of the Universe

Quantum Optics and Quantum Information Laboratory

LECTURES ON QUANTUM MECHANICS

Dissipation in Transmon

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang

The Theory of the Photon Planck, Einstein the origins of quantum theory Dirac the first quantum field theory The equations of electromagnetism in

q-plates: some classical and quantum applications

Physics of Condensed Matter I

Indistinguishability of independent single photons

Single Photon Generation & Application

General Physics (PHY 2140) Lecture 14

Quantum Ghost Imaging by Measuring Reflected Photons

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1]

Innovation and Development of Study Field. nano.tul.cz

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Wave function and Quantum Physics

I. Short answer The responses below include suggestions (not exhaustive) of points you might have raised in answering the questions.

Sub-Vacuum Phenomena

6. Molecular structure and spectroscopy I

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz

Unconventional electron quantum optics in condensed matter systems

P3TMA Experimental Projects

arxiv: v1 [quant-ph] 1 Nov 2012

Quantum information processing using linear optics

Transcription:

Quantum op*cs Chris Westbrook Antoine Browaeys

Important phenomena that CANNOT be explained classically Discovered before 1945 Discovered acer 1945 Spectum of blackbody radia;on Photo-electric effect Spontaneous emission by an atom Loop correc;on : Lamb shic in H atom Non-intui;ve correla;ons in the E&M field Hanbury-Brown and Twiss effect An;-correla;on at a beam spliler Hong-Ou-Mandel effect squeezing : reduc;on of shot noise Viola;on of Bell s inequali;es All well explained by quan*zed E&M field

An*-correla*on at a beamsplimer Photons are indivisible. Send a photon on a 50/50 beam spliler. d You can detect a photon in c and d, but never both. This is not what happens in classical E&M. c d On the other hand, you can observe interference at port e and f, even with single photons. Photons can split!! c θ e f

Hong-Ou-Mandel effect (1986) How strange are single photons! What happens if you send a single photon into port a and one into port b of a 50/50 beam spliler? b d a You never detect exactly one in c and d at the same ;me!! c

Photon shot noise If you detect on average N photons in an experiment (say at port e) the standard devia;on is N (poissonian sta;s;cs as if the photons were independent) d c θ e f No!! With a specially prepared field you can have reduced noise

Bell s inequali*es & entanglement Not only are the correla;ons non-intui;ve they are non-local: i.e. correla;ons observed at a and b cannot be explained by a local correla;on, present in the source S +1-1 I a ν 1 S b II ν +1 +1 2 +1-1 Concept of entanglement

The early days (1900-1940) 1900 Planck s law of black body radia;on 1905 Explana;on of the photo-electric effect by Einstein. Idea of photon 1926 Lewis invents the name «photon» 1927 Quantum theory of radia;on by Dirac and Fermi

«Modern» quantum op*cs (1956 1990) 1956 Hanbury-Brown & Twiss experiment Intensity correla;ons 1963 Quantum theory of photo-detec;on and coherence by R. Glauber (Nobel 2005) 1977 Photon an;bunching (Kimble, Mandel) 1981 Test of quantum physics using quantum op;cs (Aspect) 1986 Single-photon source and interferences with single photon (Grangier et Aspect) 1987 Two-photon interferences (Hong, Ou et Mandel) Squeezed states of light (Slusher )

Expansion towards applica*ons (1990?) 1995 - Beginning of quantum informa;on & entanglement 2000 - New single photon sources based on single emilers 2001 - Analogy between Bose-Einstein condensa;on and quantum op;cs 2005 - Hanbury-Brown &Twiss, HOM, with atoms: towards «atomic quantum op;cs»? (Ins;tut d Op;que) 2010 - Quantum op;cs with microwaves photons, ions, quantum circuits!! 2012-2 photons can interact in special media: NL Op;cs with individual photons!!!

Cosmic microwave background radia*on Penzas and Wilson 1964 «Cobe» mission: Nobel 2006

Black Body radia*on: fluctua*ons (anisotropies) ΔT / T ~ 10-4 Measured by the Planck mission (2013-2014)

11 1 1 111111111 1111111 111111 111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 11111

1 16 OQ 1 Bbody.nb [ [ //// // / /_] ] 1111111 ω 111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 OQ 1 Bbody.nb 1 11111111 11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(ω) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111111ρ(ω)1111 (ω) = ρ(ω)11111-11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111111 (ω) = (ω)111111 π - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111111111111111ρ(ω) Σ 1 π ω ω ω ρ(ω) = ω π (ω) = π ω 1111111111111 11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (ω) ω 1 1 1 1 11111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111 = - -ħω / -ħω / 11111 = = ħω / - 111 -ħω / = - (ħω/ ) -ħω / 11111111 ħ ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 (ω) = ħω π ħω / -

1 16 OQ 1 Bbody.nb 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111 1 111 111 111111111111 111111111111 11111111111111 11111111111111 111 1 1111111111 111 1 11111111 ħ ω 1 111111111111111 1 (ω)11111111 111 1 111 (ω ) 111 1 11 (ω ) 111 1 11 1111111111111 1 111111111111111 111111111 11111111 11111111 1 11 111111111 111 π = / 1111111 1 111111 π = - (ω ) π + (ω ) π + π π = -π 1111111111111111 111111111111111 1111111111 π = π = 11111111111 π 11 111 = -ħω / 11111111 π (ω ) = ħ ω / - 1111111(ω ) 11 1111 = 1 111(ω)1111111111111 11ω 11111111111ω 11 11111 111111111 ħω (ω) =1 ħω π ħω/ = ħω - π (ω) 1(ω)1111111111111111 111111111111 111 11111111 111111 π 1

16 OQ 1 Bbody.nb 1 1 11111111111111 1111111111111 11111 11111111 1111 1 1 111 1 111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = (ω ) π = (ω ) (ω ) π 1(ω) = ħω / 1111111 111111-1 1 1 1 1 1 1 1 1 1 1 1 1 1ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(ω) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(ω - ) 1 1 1 1 1 1 1 1 1ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1ω 1 1 1 1 1 1 1 1 1 1 1 (ω) 1 1 1 1 1 1 1 1 > 1 1 1 1 111 < 111 1 1 ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(ω) 1 1 1 1 1 1 1 1 1 1 1 1 1 11111111ω1111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 16 OQ 1 Bbody.nb ([ω] - ) - {ω } 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111111111111111 111111111 111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ω = ω + 11111111111 + = π (ω + ) π (ω ) + d dω 1 1+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 / ω 1 1 1 1 1 1 1 1ħ ω 1 1 1 1 1 1 1 1 1 1 1 ħ ω 1111111111 = ħ 1 1 1 1 1 1 1 1 1 1 1 - = π (ω - ) π (ω ) - d dω 1 1 1 1 1 1 1-ħ 1 1 1 1 1 + + - = π (ω ) 1 111 1111111 + = π (ω + ) π (ω ) + d dω - = π (ω - ) π (ω ) - d dω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 d d = ħ ( + - + - - + - )

16 OQ 1 Bbody.nb 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111 ħ d dω (π - π ) = α 1 111111111111111111 1 1 1 1 1α 1 1 1 1 1 1 1 1 1 1 d dω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111111 11111τ11 111 1111 + τ + Δ = 1Δ11111111111 11 1 1 1 1Δ 1 1 Δ = 1 1 1 1 1 1 1 1 1 11 ( + τ + Δ) = + τ + Δ + τ + Δ + Δ τ = 1 1 1 1 1 1 1 1 1 1 1 = 1 1 1 1 1 1 1 1Δ 1 1 1 1 1 1 1 1 1111111τ11 1111111τ11 111 Δ τ = - = - α 11 111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Δ 1 1Δ 1 1 1 1 1 1 1 1ħ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1ħ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1τ 1 1 1 1 11 Δ τ = (ħ ) ( + + + + - + - ) = (ħ ) (ω ) (π + π ) = (ħ ) (ω ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111111111111 1111111111ħ 1111 1 1 1 1 1 1 1(ħ ) π 1 1 1 1 1 1 1 1 111

1 16 OQ 1 Bbody.nb Δ τ = (ħ ) (ω ) + δ π 1 1 1 1 1 1 1 1 1 1 1 1δ ħ 1 1 1 1 1111δ = 1 1 1 1 1 1 1 1 1 1 1 1 1 111111 Δ τ = - α (ħ ) (ω ) + δ π = - ħ d dω (π - π ) 111d / dω1 d dω ω=ω = - ħ ħω / ħω / - = - ħ π π-π π π-π 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 π π = -ħω / 11111 = π π-π + δ π π -π π π 1δ = 111 = 111111111 π 1 1π = / 1 1 1 1 1 1 1 1 1 1 1δ = 1 1 1 = 1111111 11111 111 11111 1 1111 11111 111 1111 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111( )111111 + + = = ħω 1 1 1 1 1 1 1 1ħω 1 1 1 1 1 1 1 1 1ω 1 111111111111111ħω11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111ħω11ħω + dħω1 = = π d = π ħ ω dω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111 111111111

16 OQ 1 Bbody.nb 1 ω ω = π ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111111111111 1 111 111111111 11 111111111111111-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = = 1 1 1 1 1 1 1 1 1 1 1( + - )! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111( - )!11111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1! 1 1 1 1 1 1 1 1 1ħ ω 1 1 1 1 1 1 1 111 = ω (ω+ω-)! ω! (ω-)! 1 1 ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = ω ω ħω11 1 1 1 1 1 1 ω 1 1 1 1 1 1 1 1 1 1 11 11 ( ω ) = Σ ω ( ω+ω-)! + β( - Σ ω ħ ω ω ) 1 ω! (ω-)! Σ ω ( ω + ω - ) ( ω + ω - ) - ω ω - β ħ ω ω + 1 1 1 1 1 1 1 1 1 1 1 ω 1 1β 1 1 1 1 1 1 1 1 1 1 ω + ω - ω + ω 1 1 1 1 1 1 1 11 ω d = Σ ω ( ω + ω ) + - ω - - βħω = dω ω+ω ω 1 1 ω = ω = βħω ω = ω βħω - ω π dω β ħ ω - 1 β ħ ω = - 111111 ω 111111111111 11111dω1111111 11β 1( ) - 1 1 1 1 1 1 1 1 1 1 1 1ħω 1 1 11