ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

Similar documents
ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

Notes 19 Gradient and Laplacian

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15

ECE Spring Prof. David R. Jackson ECE Dept. Notes 13

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.)

Aperture Antennas 1 Introduction

Notes 3 Review of Vector Calculus

( ) = x( u, v) i + y( u, v) j + z( u, v) k

ECE 222b Applied Electromagnetics Notes Set 5

Problem Set 5 Math 213, Fall 2016

ECE Spring Prof. David R. Jackson ECE Dept. Notes 33

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 22

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41

Notes 18 Faraday s Law

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

1 Differential Operators in Curvilinear Coordinates

Introduction to Electromagnetism Prof. Manoj K. Harbola Department of Physics Indian Institute of Technology, Kanpur

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

Math review. Math review

5. Suggestions for the Formula Sheets

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

Preliminary Examination - Day 1 Thursday, August 10, 2017

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

Preliminary Examination - Day 1 Thursday, May 10, 2018

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

Created by T. Madas SURFACE INTEGRALS. Created by T. Madas

ECE Spring Prof. David R. Jackson ECE Dept.

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6

Chapter 1. Vector Analysis

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

A(β) = C m e jmβ (1.3) A(β)e jmβ dβ. (1.4) A d ne jmβn. (1.5)

THE COMPOUND ANGLE IDENTITIES

45-Degree Update of The Wic Fitter Algorithm. Rob Kroeger, Vance Eschenburg

Poncelet s porism and periodic triangles in ellipse 1

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

Fields of a Dipole Near a Layered Substrate

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

CH.4. STRESS. Continuum Mechanics Course (MMC)

CLASS XII CBSE MATHEMATICS INTEGRALS

Scattering cross-section (µm 2 )

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z.

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000

Chapter 4 Reflection and Transmission of Waves

Notes 24 Image Theory

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005

Section 8.2 Vector Angles

Transverse Dynamics II

Notes 4 Electric Field and Voltage

Angular Momentum Properties

Solutions to Sample Questions for Final Exam

Road Map. Potential Applications of Antennas with Metamaterial Loading

Preliminary Examination - Day 1 Thursday, August 9, 2018

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE 222b Applied Electromagnetics Notes Set 4b

3. Calculating Electrostatic Potential

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Summer Review for Students Entering AP Calculus AB

Derivatives and Integrals

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 28

III. Spherical Waves and Radiation

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance

ECE 6341 Spring 2016 HW 2

UNIVERSITY OF EAST ANGLIA

Mechanics Physics 151

Depths of Field & Focus

PH101 Saurabh Basu Class timings (Group II): 9 am-10 am (Wednesdays) 10 am -11 am (Thursdays)

ES.182A Topic 44 Notes Jeremy Orloff

General Properties of Planar Leaky-Wave Antennas

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world

Physics 505 Fall 2005 Homework Assignment #8 Solutions

ECE Spring Prof. David R. Jackson ECE Dept.

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37

Using Rotational Matrices to Generate Triplex Algebras

Name (please print) π cos(θ) + sin(θ)dθ

Solutions: Homework 5

MULTIVARIABLE INTEGRATION

cauchy s integral theorem: examples

Problem Solving 1: Line Integrals and Surface Integrals

Depths of Field & Focus (I) First identify the location and size of the image of a flat (2-D) object by tracing a number of rays.

Notes 32 Magnetic Force and Torque

Name (please print) π cos(θ) + sin(θ)dθ

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

Transcription:

ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 1 1

Overview In this set of notes we derive the far-field pattern of a circular patch operating in the dominant TM 11 mode. We use the magnetic current model. 2

Circular Patch: TM 11 Mode y a x z ( ρφ, = cosφ ( ρ E A J k 1 This corresponds to a probe on the x axis. x 11 k = a x 11 = 1.841 3

Circular Patch (cont. Magnetic current model: M = nˆ Eˆ s = ˆ ρ Eˆ (, cos ( M E a A J ka sφ = z φ = φ 1 Choose 1 A = J ka M cos s φ = 1 ( φ ( V = h at patch edge on axis [V] x 4

Far Field of Circular Patch Reciprocity setup: z θ ε r r M s φ H i ˆp h x y M s φ a φ x 5

Far Field of Circular Patch (cont. Far-field: ( θφ FF E r,, =< ab, > p =< ba, > S S a s = H M ds = = ( ρ φ H,, z cosφ ds φ h ( H a, φ, z cosφ a dz dφ φ The primes here denotes source coordinates. ( ( FF E r, θφ, H a, φ, z cosφ a dz dφ p = h φ ( sin ( cos = x + y Hφ H φ H φ 6

Far Field of Circular Patch (cont. Inside the substrate we have (see Notes 9: ( ( ( x + kyy ( ( jkx xy, xy, z1 z1 H x, y, z = H,, e sec k h cos k ( z + h ( k z = k N ( 1 1 θ The exponent term may be put in cylindrical coordinates as follows: x y ( sinθcosφ( cosφ ( sinθsinφ( sinφ k asinθ( cosφcosφ sinφsin φ' k sinθcos( φ φ kx + ky = k a + k a = + = 7

Far Field of Circular Patch (cont. Hence ( cos ( φ sec z1 z1 H = k h k z + h e ( jka ( sinθcos φ' φ sin φ Hx (,, + cos φ Hy (,, Since the horizontal magnetic field components are modeled as current in the TEN, we have i (,, = (,,( 1 Γ( H H θ xy, xy, p = θ : TM, p= φ: TE 8

Far Field of Circular Patch (cont. TM ( z ˆp = θˆ H H i x i y E (,, = ˆ φ xˆ = ( sinφ η E (,, = ˆ φ yˆ = ( cosφ η E η E η TE z ( ˆp = φˆ H i x E η (,, = ˆ θ xˆ = ( cosθcosφ E η H i y E η (,, = ˆ θ yˆ = ( cosθsinφ E η 9

Far Field E θ TM z ( ˆp = θˆ Substituting for H x and H y, we have ( cos ( φ sec z1 z1 H = k h k z + h e jka ( sin cos E Γ η ( θ φ φ TM [ sinφ sinφ cosφ cosφ]( 1 ( θ Note: [ ] = cos( φ φ Hence, we have FF,, E E r = sec k h cos k ( z + h e θ ( θφ ( ( TM ( ( jka ( sinθcos φ φ h z1 z1 η 1 Γ ( θ cos( φ φ cosφ a dz dφ 1

For the z integral we have Far Field E θ (cont. ( sec k h cos k ( z + h dz = htanc( k h z1 h z1 z1 so that FF E (,, tanc( ( TM E θ r θφ = a h kz1h 1 Γ ( θ I η TM where 2 jq cos( I π e φ φ cos φ φ cosφ dφ TM ( q ( k a sin θ Let φ = φ φ φ jq cos( φ I = e cos φ cos φ + φ dφ TM φ ( ( 11

Far Field E θ (cont. We have that ( cos φ + φ = cosφ cosφ sinφ sinφ and 2 π φ 2 π φ ( dφ = ( dφ so that ( cos( jqcos( φ ITM e cos + d = cos φ φ φ φ jqcosφ 2 φ e cos φ dφ cos sin jq φ e sin cos φ φ φ dφ Now use 2 2 cos φ = 1 sin φ Integrates to zero (odd function 12

Far Field E θ (cont. jqcosφ jqcosφ 2 ITM = cosφ e dφ cosφ e sin φ dφ Now we use the following identity: n+ 1 1 2 π Γ n + 2 sin ( n q jqcosφ 2n e φ dφ = J n q n =,1, 2 where 1 Γ = π 2 3 1 Γ = π 2 2 13

Hence and Far Field E θ (cont. jqcos φ" e dφ = π J q e 2 ( jqcos φ" 2 1 (n = J ( q sin φ dφ = q (n = 1 and thus φ π J1( q ITM = cos (2 J ( q q Next, use so that n J n x = Jn 1 x Jn x x ( ( ( ( ( J x = J x 1 J 1 ( x x 14

Far Field E θ (cont. Hence ITM = cos φ J ( q 1 The far field is then FF E ( Eθ r, θφ, = ( ah tanc( kz1h Q( θ η cos φ J ( kasin θ 1 where TM Q( θ = 1 Γ ( θ 15

TE z ( ˆp = φˆ Far Field E φ Performing similar steps, we have ( ( ( TE jka ( sin θ cos ( φ φ θ H = sec k h cos k z h 1 Γ ( e φ z1 z1 E η [ sinφ cosθcosφ cosφ cosθsinφ] + Using reciprocity and performing the integration in z, we have ( ( TE, θφ, = ( tanc( z1 1 Γ ( θ FF Eφ r a h k h η E ( cos( cos jq φ φ e sin cos θ φ φ φ dφ 16

Far Field E φ (cont. Evaluating the integral, we have jqcos( φ φ ITE e sin( cos d φ φ φ φ ( jqcosφ = e sin cos + φ φ φ dφ [ ] jqcosφ = e sinφ cosφ cosφ sinφ sinφ dφ jqcosφ jqcos φ" 2 = cosφ e sinφ cosφ dφ sinφ e sin φ dφ J ( q q 1 = sinφ integrates to zero (odd function 17

Far Field E φ (cont. Hence E ( ( ( kasinθ FF 1 Eφ r, θφ, = ( ah tanc kz1h sinφ 2 π P( θ η ka sinθ J where ( TE Γ P( θ cosθ 1 ( θ 18